136
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of autophagy and angiogenesis modulators in colorectal cancer based on bioinformatics analysis

ORCID Icon, ORCID Icon & ORCID Icon
Pages 340-355 | Received 03 Jul 2023, Accepted 11 Sep 2023, Published online: 04 Oct 2023

References

  • Zhang, J.; Bing, Z.; Yan, P.; Tian, J.; Shi, X.; Wang, Y.; Yang, K. Identification of 17 mRNAs and a miRNA as an Integrated Prognostic Signature for Lung Squamous Cell Carcinoma. J. Gene Med. 2019, 21, e3105. DOI: 10.1002/jgm.3105.
  • Liu, B. X.; Huang, G. J.; Cheng, H. B. Comprehensive Analysis of Core Genes and Potential Mechanisms in Rectal Cancer. J. Comput. Biol. 2019, 26, 1262–1277. DOI: 10.1089/cmb.2019.0073.
  • Liang, B.; Li, C.; Zhao, J. Identification of Key Pathways and Genes in Colorectal Cancer Using Bioinformatics Analysis. Med. Oncol. 2016, 33, 111. DOI: 10.1007/s12032-016-0829-6.
  • Bogaert, J.; Prenen, H. Molecular Genetics of Colorectal Cancer. Annu. Rev. Pathol.: Mech. Dis. 2014, 27, 9–14. DOI: 10.1146/annurev-pathol-011110-130235.
  • Hisamuddin, I. M.; Yang, V. W. Molecular Genetics of Colorectal Cancer: An Overview. Curr. Colorectal Cancer Rep. 2006, 2, 53–59. DOI: 10.1007/s11888-006-0002-2.
  • Huang, Z.; Yang, Q.; Huang, Z. Identification of Critical Genes and Five Prognostic Biomarkers Associated with Colorectal Cancer. Med. Sci. Monit. 2018, 24, 4625–4633. DOI: 10.12659/MSM.907224.
  • Zhang, Y.; Tao, Y.; Li, Y.; Zhao, J.; Zhang, L.; Zhang, X.; Dong, C.; Xie, Y.; Dai, X.; Zhang, X.; et al. The Regulatory Network Analysis of Long Noncoding RNAs in Human Colorectal Cancer. Funct. Integr. Genomics 2018, 18, 261–275. DOI: 10.1007/s10142-017-0588-2.
  • Bu, F.; Zhu, X.; Zhu, J.; Liu, Z.; Wu, T.; Luo, C.; Lin, K.; Huang, J. Bioinformatics Analysis Identifies a Novel Role of GINS1 Gene in Colorectal Cancer. Cancer Manag. Res. 2020, 12, 11677–11687. DOI: 10.2147/CMAR.S279165.
  • Paquette, M.; El-Houjeiri, L.; Pause, A. mTOR Pathways in Cancer and Autophagy. Cancers (Basel) 2018, 10, 18. DOI: 10.3390/cancers10010018.
  • Janku, F.; Yap, T. A.; Meric‑Bernstam, F. Targeting the PI3K Pathway in Cancer: Are we Making Headway? Nat. Rev. Clin. Oncol. 2018, 15, 273–291. DOI: 10.1038/nrclinonc.2018.28.
  • Carling, D. AMPK Signalling in Health and Disease. Curr. Opin. Cell Biol. 2017, 45, 31–37. DOI: 10.1016/j.ceb.2017.01.005.
  • Laplante, M.; Sabatini, D. M. mTOR Signaling at a Glance. J. Cell Sci. 2009, 122, 3589–3594. DOI: 10.1242/jcs.051011.
  • Yoshida, G. J. Therapeutic Strategies of Drug Repositioning Targeting Autophagy to Induce Cancer Cell Death: From Pathophysiology to Treatment. J. Hematol. Oncol. 2017, 10, 67. DOI: 10.1186/s13045-017-0436-9.
  • Yanagisawa, N.; Satoh, T.; Hana, K.; Ichinoe, M.; Nakada, N.; Endou, H.; Okayasu, I.; Murakumo, Y. L-Aminoacid Transporter 1 May Be a Prognostic Marker for Local Progression of Prostatic Cancer under Expectant Management. Cancer Biomark. 2015, 15, 365–374. DOI: 10.3233/CBM-150486.
  • He, B.; Zhang, N.; Zhao, R. Dexamethasone Downregulates SLC7A5 Expression and Promotes Cell Cycle Arrest, Autophagy and Apoptosis in BeWo Cells. J. Cell. Physiol. 2016, 231, 233–242. DOI: 10.1002/jcp.25076.
  • Wang, Q.; Beaumont, K. A.; Otte, N. J.; Font, J.; Bailey, C. G.; van Geldermalsen, M.; Sharp, D. M.; Tiffen, J. C.; Ryan, R. M.; Jormakka, M.; et al. Targeting Glutamine Transport to Suppress Melanoma Cell Growth. Int. J. Cancer 2014, 135, 1060–1071. DOI: 10.1002/ijc.28749.
  • Xu, M.; Sakamoto, S.; Matsushima, J.; Kimura, T.; Ueda, T.; Mizokami, A.; Kanai, Y.; Ichikawa, T. Up-Regulation of LAT1 during Antiandrogen Therapy Contributes to Progression in Prostate Cancer Cells. J. Urol. 2016, 195, 1588–1597. DOI: 10.1016/j.juro.2015.11.071.
  • Ding, K.; Tan, S.; Huang, X.; Wang, X.; Li, X.; Fan, R.; Zhu, Y.; Lobie, P. E.; Wang, W.; Wu, Z. GSE1 Predicts Poor Survival Outcome in Gastric Cancer Patients by SLC7A5 Enhancement of Tumor Growth and Metastasis. J. Biol. Chem. 2018, 293, 3949–3964. DOI: 10.1074/jbc.RA117.001103.
  • Miko, E.; Margitai, Z.; Czimmerer, Z.; Varkonyi, I.; Dezso, B.; Lanyi, A.; Bacso, Z.; Scholtz, B. miR-126 Inhibits Proliferation of Small Cell Lung Cancer Cells by Targeting SLC7A5. FEBS Lett. 2011, 585, 1191–1196. DOI: 10.1016/j.febslet.2011.03.039.
  • Kanai, Y. Amino Acid Transporter LAT1 (SLC7A5) as a Molecular Target for Cancer Diagnosis and Therapeutics. Pharmacol. Ther. 2022, 230, 107964. DOI: 10.1016/j.pharmthera.2021.107964.
  • Fung, M. K.; Chan, G. C. Drug-Induced Amino Acid Deprivation as Strategy for Cancer Therapy. J. Hematol. Oncol. 2017, 10, 144. DOI: 10.1186/s13045-017-0509.
  • Ben-Sahra, I.; Manning, B. D. mTORC1 Signaling and the Metabolic Control of Cell Growth. Curr. Opin. Cell Biol. 2017, 45, 72–82. DOI: 10.1016/j.ceb.2017.02.012.
  • Fotiadis, D.; Kanai, Y.; Palacín, M. The SLC3 and SLC7 Families of Amino Acid Transporters. Mol. Aspects Med. 2013, 34, 139–158. DOI: 10.1016/j.mam.2012.10.007.
  • Kanai, Y.; Segawa, H.; Miyamoto, K. I.; Uchino, H.; Takeda, E.; Endou, H. Expression Cloning and Characterization of a Transporter for Large Neutral Amino Acids Activated by the Heavy Chain of 4F2 Antigen (CD98). J. Biol. Chem. 1998, 273, 23629–23632. DOI: 10.1074/jbc.273.37.23629.
  • Mastroberardino, L.; Spindler, B.; Pfeiffer, R.; Skelly, P. J.; Loffing, J.; Shoemaker, C. B.; Verrey, F. Amino-Acid Transport by Heterodimers of 4F2hc/CD98 and Members of a Permease Family. Nature 1998, 395, 288–291. DOI: 10.1038/26246.
  • Meier, C.; Ristic, Z.; Klauser, S.; Verrey, F. Activation of System L Heterodimeric Amino Acid Exchangers by Intracellular Substrates. EMBO J. 2002, 21, 580–589. DOI: 10.1093/emboj/21.4.580.
  • Yanagida, O.; Kanai, Y.; Chairoungdua, A.; Kim, D. K.; Segawa, H.; Nii, T.; Cha, S. H.; Matsuo, H.; Fukushima, J.; Fukasawa, Y.; et al. Human L-Type Amino Acid Transporter 1 (LAT1): Characterization of Function and Expression in Tumor Cell Lines. Biochim. Biophys. Acta 2001, 1514, 291–302. DOI: 10.1016/S0005-2736(01)00384-4.
  • Salisbury, T. B.; Arthur, S. The Regulation and Function of the L-Type Amino Acid Transporter 1 (LAT1) in Cancer. Int. J. Mol. Sci. 2018, 19, 2373. DOI: 10.3390/ijms19082373.
  • Hayashi, K.; Anzai, N. Novel Therapeutic Approaches Targeting L-Type Amino Acid Transporters for Cancer Treatment. World J. Gastrointest. Oncol. 2017, 9, 21–29. DOI: 10.4251/wjgo.v9.i1.21.
  • Kato, H.; Nakajima, S.; Saito, Y.; Takahashi, S.; Katoh, R.; Kitamura, M. mTORC1 Serves ER Stress-Triggered Apoptosis via Selective Activation of the IRE1–JNK Pathway. Cell Death Differ. 2012, 19, 310–320. DOI: 10.1038/cdd.2011.98.
  • Saxton, R. A.; Sabatini, D. M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. DOI: 10.1016/j.cell.2017.02.004.
  • Chen, R.; Zou, Y.; Mao, D.; Sun, D.; Gao, G.; Shi, J.; Liu, X.; Zhu, C.; Yang, M.; Ye, W.; et al. The General Amino Acid Control Pathway Regulates mTOR and Autophagy during Serum/Glutamine Starvation. J. Cell Biol. 2014, 206, 173–182. DOI: 10.1083/jcb.201403009.
  • Park, Y.; Reyna-Neyra, A.; Philippe, L.; Thoreen, C. C. mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-Transcriptional Control of ATF4. Cell Rep. 2017, 19, 1083–1090. DOI: 10.1016/j.celrep.2017.04.042.
  • Kim, J.; Kundu, M.; Viollet, B.; Guan, K. L. AMPK and mTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. DOI: 10.1038/ncb2152.
  • Gao, P.; Tchernyshyov, I.; Chang, T. C.; Lee, Y. S.; Kita, K.; Ochi, T.; Zeller, K. I.; De Marzo, A. M.; Van Eyk, J. E.; Mendell, J. T.; Dang, C. V. c-Myc Suppression of miR-23a/b Enhances Mitochondrial Glutaminase Expression and Glutamine Metabolism. Nature 2009, 458, 762–765. DOI: 10.1038/nature07823.
  • Hu, E.; Liang, P.; Spiegelman, B. M. AdipoQ is a Novel Adipose-Specific Gene Dysregulated in Obesity. J. Biol. Chem. 1996, 271, 10697–10703. DOI: 10.1074/jbc.271.18.10697.
  • Spyridopoulos, T. N.; Petridou, E. T.; Skalkidou, A.; Dessypris, N.; Chrousos, G. P.; Mantzoros, C. S., and Obesity and Cancer Oncology Group. Low Adiponectin Levels Are Associated with Renal Cell Carcinoma: A Case‐Control Study. Int. J. Cancer 2007, 120, 1573–1578. DOI: 10.1002/ijc.22526.
  • Dalamaga, M.; Diakopoulos, K. N.; Mantzoros, C. S. The Role of Adiponectin in Cancer: A Review of Current Evidence. Endocr. Rev. 2012, 33, 547–594. DOI: 10.1210/er.2011-1015.
  • Svensson, R.; Shaw, R. J. Cancer Metabolism: Tumour Friend or Foe. Nature 2012, 485, 590–591. DOI: 10.1038/485590a.
  • Pouysségur, J.; Dayan, F.; Mazure, N. M. Hypoxia Signalling in Cancer and Approaches to Enforce Tumour Regression. Nature 2006, 441, 437–443. DOI: 10.1038/nature04871.
  • Shaw, R. J.; Cantley, L. C. Ras, PI(3)K and mTOR Signalling Controls Tumour Cell Growth. Nature 2006, 441, 424–430. DOI: 10.1038/nature04869.
  • Xiao, B.; Sanders, M. J.; Underwood, E.; Heath, R.; Mayer, F. V.; Carmena, D.; Jing, C.; Walker, P. A.; Eccleston, J. F.; Haire, L. F.; et al. Structure of Mammalian AMPK and Its Regulation by ADP. Nature 2011, 472, 230–233. DOI: 10.1038/nature09932.
  • O'Neill, L. A.; Hardie, D. G. Metabolism of Inflammation Limited by AMPK and Pseudo Starvation. Nature 2013, 493, 346–355. DOI: 10.1038/nature11862.
  • Kelesidis, I.; Kelesidis, T.; Mantzoros, C. Adiponectin and Cancer: A Systematic Review. Br. J. Cancer 2006, 94, 1221–1225. DOI: 10.1038/sj.bjc.6603051.
  • Majumder, P. K.; Febbo, P. G.; Bikoff, R.; Berger, R.; Xue, Q.; McMahon, L. M.; Manola, J.; Brugarolas, J.; McDonnell, T. J.; Golub, T. R.; et al. mTOR Inhibition Reverses Akt-Dependent Prostate Intraepithelial Neoplasia through Regulation of Apoptotic and HIF-1-Dependent Pathways. Nat. Med. 2004, 10, 594–601. DOI: 10.1038/nm1052.
  • Engelman, J. A.; Chen, L.; Tan, X.; Crosby, K.; Guimaraes, A. R.; Upadhyay, R.; Maira, M.; McNamara, K.; Perera, S. A.; Song, Y.; et al. Effective Use of PI3K and MEK Inhibitors to Treat Mutant Kras G12D and PIK3CA H1047R Murine Lung Cancers. Nat. Med. 2008, 14, 1351–1356. DOI: 10.1038/nm.1890.
  • Yu, H.; Wark, L.; Ji, H.; Willard, L.; Jaing, Y.; Han, J.; He, H.; Ortiz, E.; Zhang, Y.; Medeiros, D. M.; Lin, D. Dietary Wolfberry Upregulates Carotenoid Metabolic Genes and Enhances Mitochondrial Biogenesis in the Retina of db/db Diabetic Mice. Mol. Nutr. Food Res. 2013, 57, 1158–1169. DOI: 10.1002/mnfr.201200642.
  • Joe, S. G.; Yoon, Y. H.; Choi, J. A.; Koh, J. Y. Anti-Angiogenic Effect of Metformin in Mouse Oxygen Induced Retinopathy is Mediated by Reducing Levels of the Vasular Endothelial Growth Factor Receptor Flk-1. PLoS One. 2015, 10, e0119708. DOI: 10.1371/journal.pone.0119708.
  • Karar, J.; Maity, A. PI3K/AKT/mTOR Pathway in Angiogenesis. Front. Mol. Neurosci. 2011, 4, 51. DOI: 10.3389/fnmol.2011.00051.
  • Habeeb, B. S.; Kitayama, J.; Nagawa, H. Adiponectin Supports Cell Survival in Glucose Deprivation through Enhancement of Autophagic Response in Colorectal Cancer Cells. Cancer Sci. 2011, 102, 999–1006. DOI: 10.1111/j.1349-7006.2011.01902.x.
  • Lam, J. B. B.; Chow, K. H. M.; Xu, A.; Lam, K. S. L.; Liu, J.; Wong, N.-S.; Moon, R. T.; Shepherd, P. R.; Cooper, G. J. S.; Wang, Y. Adiponectin Haploinsufficiency Promotes Mammary Tumor Development in MMTV-PyVT Mice by Modulation of Phosphatase and Tensin Homolog Activities. PLoS One. 2009, 4, e4968. DOI: 10.1371/journal.pone.0004968.
  • Iwabu, M.; Yamauchi, T.; Okada-Iwabu, M.; Sato, K.; Nakagawa, T.; Funata, M.; Yamaguchi, M.; Namiki, S.; Nakayama, R.; Tabata, M.; et al. Adiponectin and AdipoR1 Regulate PGC-1alpha and Mitochondria by Ca(2+) and AMPK/SIRT1. Nature 2010, 464, 1313–1319. DOI: 10.1038/nature08991.
  • Li, Y.; Sun, R.; Zou, J.; Ying, Y.; Luo, Z. Dual Roles of the AMP-Activated Protein Kinase Pathway in Angiogenesis. Cells 2019, 8, 752. DOI: 10.3390/cells8070752.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.