150
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

6-azido and 6-azidomethyl uracil nucleosides

, & ORCID Icon
Pages 453-471 | Received 01 Sep 2023, Accepted 10 Oct 2023, Published online: 19 Oct 2023

References

  • Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic Azides: An Exploding Diversity of a Unique Class of Compounds. Angew. Chem. Int. Ed. Engl. 2005, 44, 5188–5240. DOI: 10.1002/anie.200400657.
  • Minozzi, M.; Nanni, D.; Spagnolo, P. From Azides to Nitrogen-Centered Radicals: Applications of Azide Radical Chemistry to Organic Synthesis. Chemistry 2009, 15, 7830–7840. DOI: 10.1002/chem.200802710.
  • Tanimoto, H.; Kakiuchi, K. Recent Applications and Developments of Organic Azides in Total Synthesis of Natural Products. Nat. Prod. Commun. 2013, 8, 1021–1034.
  • Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A Strain-Promoted [3 + 2] Azide − Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. J. Am. Chem. Soc. 2004, 126, 15046–15047. DOI: 10.1021/ja044996f.
  • Meldal, M.; Tornøe, C. W. Cu-Catalyzed Azide − Alkyne Cycloaddition. Chem. Rev. 2008, 108, 2952–3015. DOI: 10.1021/cr0783479.
  • Krell, K.; Harijan, D.; Ganz, D.; Doll, L.; Wagenknecht, H.-A. Postsynthetic Modifications of dna and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. Bioconjug. Chem. 2020, 31, 990–1011. DOI: 10.1021/acs.bioconjchem.0c00072.
  • Chang, P. V.; Prescher, J. A.; Sletten, E. M.; Baskin, J. M.; Miller, I. A.; Agard, N. J.; Lo, A.; Bertozzi, C. R. Copper-Free Click Chemistry in Living Animals. Proc. Natl. Acad. Sci. U S A 2010, 107, 1821–1826. DOI: 10.1073/pnas.0911116107.
  • Gourdain, S.; Petermann, C.; Harakat, D.; Clivio, P. Highly Efficient and Facile Synthesis of 5-Azido-2′-Deoxyuridine. Nucleosides. Nucleotides Nucleic Acids. 2010, 29, 542–546. DOI: 10.1080/15257770.2010.487507.
  • Liang, Y.; Wen, Z.; Cabrera, M.; Howlader, A. H.; Wnuk, S. F., Purines. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations: Knowledge Updates 2020/1, Christmann, M.; Huang, Z.; Jiang, X.; Li, J. J.; Oestreich, M.; Petersson, E. J.; Schaumann, E.; Wang, M., Eds. Georg Thieme Verlag: Stuttgart, 2020; pp 195–384
  • Tanaka, H.; Hayakawa, H.; Haraguchi, K.; Miyasaka, T. Introduction of an Azido Group to the C-6 Position of Uridine by the Use of a 6-Iodouridine Derivative. Nucleosides Nucleotides 1985, 4, 607–612. DOI: 10.1080/07328318508081893.
  • Engels, J.; Krim, J.; Taourirte, M.; Grünewald, C.; Krstic, I. Microwave-Assisted Click Chemistry for Nucleoside Functionalization: Useful Derivatives for Analytical and Biological Applications. Synthesis 2013, 45, 396–405. DOI: 10.1055/s-0032-1317964.
  • Neef, A. B.; Luedtke, N. W. An Azide-Modified Nucleoside for Metabolic Labeling of DNA. Chembiochem 2014, 15, 789–793. DOI: 10.1002/cbic.201400037.
  • Wen, Z.; Peng, J.; Tuttle, P. R.; Ren, Y.; Garcia, C.; Debnath, D.; Rishi, S.; Hanson, C.; Ward, S.; Kumar, A.; et al. Electron-Mediated Aminyl and Iminyl Radicals from C5 Azido-Modified Pyrimidine Nucleosides Augment Radiation Damage to Cancer Cells. Org. Lett. 2018, 20, 7400–7404. DOI: 10.1021/acs.orglett.8b03035.
  • Wada, T.; Mochizuki, A.; Higashiya, S.; Tsuruoka, H.; Kawahara, S-i.; Ishikawa, M.; Sekine, M. Synthesis and Properties of 2-Azidodeoxyadenosine and Its Incorporation into Oligodeoxynucleotides. Tetrahedron Lett 2001, 42, 9215–9219. DOI: 10.1016/S0040-4039(01)02028-7.
  • Nainar, S.; Beasley, S.; Fazio, M.; Kubota, M.; Dai, N.; Corrêa, I. R.Jr.; Spitale, R. C. Metabolic Incorporation of Azide Functionality into Cellular RNA. Chembiochem 2016, 17, 2149–2152. DOI: 10.1002/cbic.201600300.
  • Zayas, J.; Annoual, M.; Das, J. K.; Felty, Q.; Gonzalez, W. G.; Miksovska, J.; Sharifai, N.; Chiba, A.; Wnuk, S. F. Strain Promoted Click Chemistry of 2- or 8-Azidopurine and 5-Azidopyrimidine Nucleosides and 8-Azidoadenosine Triphosphate with Cyclooctynes. Application to Living Cell Fluorescent Imaging. Bioconjug. Chem. 2015, 26, 1519–1532. DOI: 10.1021/acs.bioconjchem.5b00300.
  • Ozols, K.; Cīrule, D.; Novosjolova, I.; Stepanovs, D.; Liepinsh, E.; Bizdēna, Ē.; Turks, M. Development of N6-Methyl-2-(1,2,3-Triazol-1-yl)-2′-Deoxyadenosine as a Novel Fluorophore and Its Application in Nucleotide Synthesis. Tetrahedron Lett 2016, 57, 1174–1178. DOI: 10.1016/j.tetlet.2016.02.003.
  • Perrone, D.; Marchesi, E.; Preti, L.; Navacchia, M. L. Modified Nucleosides, Nucleotides and Nucleic Acids via Click Azide-Alkyne Cycloaddition for Pharmacological Applications. Molecules 2021, 26, 3100. DOI: 10.3390/molecules26113100.
  • Līpiņš, D. D.; Jeminejs, A.; Novosjolova, I.; Bizdēna, Ē.; Turks, M. Synthesis of Azido and Triazolyl Purine Ribonucleosides. Curr. Protoc. 2021, 1, e241. DOI: 10.1002/cpz1.241.
  • Müggenburg, F.; Müller, S. Azide-Modified Nucleosides as Versatile Tools for Bioorthogonal Labeling and Functionalization. Chem. Rec. 2022, 22, e202100322. DOI: 10.1002/tcr.202100322.
  • Tera, M.; Glasauer, S. M. K.; Luedtke, N. W. In Vivo Incorporation of Azide Groups into DNA by Using Membrane-Permeable Nucleotide Triesters. Chembiochem 2018, 19, 1939–1943. DOI: 10.1002/cbic.201800351.
  • Adhikary, A.; Khanduri, D.; Pottiboyina, V.; Rice, C. T.; Sevilla, M. D. Formation of Aminyl Radicals on Electron Attachment to AZT: Abstraction from the Sugar Phosphate Backbone versus One-Electron Oxidation of Guanine. J. Phys. Chem. B 2010, 114, 9289–9299. DOI: 10.1021/jp103403p.
  • Mudgal, M.; Rishi, S.; Lumpuy, D. A.; Curran, K. A.; Verley, K. L.; Sobczak, A. J.; Dang, T. P.; Sulimoff, N.; Kumar, A.; Sevilla, M. D.; et al. Prehydrated One-Electron Attachment to Azido-Modified Pentofuranoses: Aminyl Radical Formation, Rapid H-Atom Transfer, and Subsequent Ring Opening. J. Phys. Chem. B 2017, 121, 4968–4980. DOI: 10.1021/acs.jpcb.7b01838.
  • Mudgal, M.; Dang, T. P.; Sobczak, A. J.; Lumpuy, D. A.; Dutta, P.; Ward, S.; Ward, K.; Alahmadi, M.; Kumar, A.; Sevilla, M. D.; et al. Site of Azido Substitution in the Sugar Moiety of Azidopyrimidine Nucleosides Influences the Reactivity of Aminyl Radicals Formed by Dissociative Electron Attachment. J. Phys. Chem. B 2020, 124, 11357–11370. DOI: 10.1021/acs.jpcb.0c08201.
  • Adjei, D.; Reyes, Y.; Kumar, A.; Ward, S.; Denisov, S. A.; Alahmadi, M.; Sevilla, M. D.; Wnuk, S. F.; Mostafavi, M.; Adhikary, A. Pathways of the Dissociative Electron Attachment Observed in 5- and 6-Azidomethyluracil Nucleosides: Nitrogen (N2) Elimination vs Azide Anion (N3–) Elimination. J. Phys. Chem. B 2023, 127, 1563–1571. DOI: 10.1021/acs.jpcb.2c08257.
  • da Paixao Soares, F.; Groaz, E.; Lescrinier, E.; Neyts, J.; Leyssen, P.; Herdewijn, P. NMR-Based Conformational Analysis of 2’,6-Disubstituted Uridines and Antiviral Evaluation of New Phosphoramidate Prodrugs. Bioorg. Med. Chem. 2015, 23, 5809–5815. DOI: 10.1016/j.bmc.2015.07.003.
  • Tanaka, H.; Hayakawa, H.; Iijima, S.; Haraguchi, K.; Miyasaka, T. Lithiation of 3’,5’–(Tetraisopropyldisiloxane-1,3-Diyl)-2’-Deoxyuridine: Synthesis of 6-Substituted 2’-Deoxyuridines. Tetrahedron 1985, 41, 861–866. DOI: 10.1016/S0040-4020(01)96402-6.
  • Groziak, M. P.; Thomas, D. W. Synthesis of New Transglycosidically Tethered 5’-Nucleotides Constrained to a Highly Biologically Relevant Profile. J. Org. Chem. 2002, 67, 2152–2159. DOI: 10.1021/jo0110045.
  • Tanaka, H.; Hayakawa, H.; Shibata, S.; Haraguchi, K.; Miyasaka, T.; Hirota, K. Synthesis of 6-Methyluridine via Palladium-Catalyzed Cross-Coupling between a 6-Iodouridine Derivative and Tetramethylstannane. Nucleosides Nucleotides 1992, 11, 319–328. DOI: 10.1080/07328319208021706.
  • Savitha, B.; Reddy, E. K.; Kumar, C. S. A.; Karuvalam, R. P.; Padusha, M. S. A.; Bakulev, V. A.; Narasimhamurthy, K. H.; Sajith, A. M.; Joy, M. N. A Modified Approach for the Site-Selective Direct C-6 Arylation of Benzylated Uracil. Tetrahedron Lett 2019, 60, 151332. DOI: 10.1016/j.tetlet.2019.151332.
  • Liang, Y.; Wnuk, S. Transition Metal‐Catalyzed C–H Functionalization of Nucleoside Bases. In Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, T. Punniyamurthy, A. Kumar, Eds. Hoboken, NJ, USA: John Wiley & Sons, Inc. 2023; pp 631–655
  • Felczak, K.; Drabikowska, A. K.; Vilpo, J. A.; Kulikowski, T.; Shugar, D. 6-Substituted and 5,6-Disubstituted Derivatives of Uridine: Stereoselective Synthesis, Interaction with Uridine Phosphorylase, and in Vitro Antitumor Activity. J. Med. Chem. 1996, 39, 1720–1728. DOI: 10.1021/jm950675q.
  • Graml, A.; Ghosh, I.; König, B. Synthesis of Arylated Nucleobases by Visible Light Photoredox Catalysis. J. Org. Chem. 2017, 82, 3552–3560. DOI: 10.1021/acs.joc.7b00088.
  • Kumar, R. 5-Bromo (or Chloro)-6-Azido-5,6-Dihydro-2′-Deoxyuridine and -Thymidine Derivatives with Potent Antiviral Activity. Bioorg. Med. Chem. Lett. 2002, 12, 275–278. DOI: 10.1016/s0960-894x(01)00735-1.
  • Liang, Y.; Wnuk, S. F. Modification of Purine and Pyrimidine Nucleosides by Direct C-H Bond Activation. Molecules 2015, 20, 4874–4901. DOI: 10.3390/molecules20034874.
  • Groziak, M. P.; Lin, R.; Stevens, W. C.; Wotring, L. L.; Townsend, L. B.; Balzarini, J.; Witvrouw, M.; De Clercq, E. Definitive Solution Structures for the 6-Formylated Versions of 1-(βD-Ribofuranosyl)-, 1-(2′-Deoxy-β-D-Ribofuranosyl)-, and 1-β-D-Arabinofuranosyluracil, and of Thymidine. Nucleosides Nucleotides 1996, 15, 1041–1057. DOI: 10.1080/07328319608002033.
  • Zhang, W.; Robins, M. J. Removal of Silyl Protecting Groups from Hydroxyl Functions with Ammonium Fluoride in Methanol. Tetrahedron Lett 1992, 33, 1177–1180. DOI: 10.1016/S0040-4039(00)91889-6.
  • Robins, M. J.; Wnuk, S. F.; Mullah, K. B.; Dalley, N. K.; Yuan, C.-S.; Lee, Y.; Borchardt, R. T. Nucleic Acid Related Compounds. 80. Synthesis of 5’-S-(Alkyl and Aryl)-5’-Fluoro-5’-Thioadenosines with Xenon Difluoride or (Diethylamido)Sulfur Trifluoride, Hydrolysis in Aqueous Buffer, and Inhibition of S-Adenosyl-L-Homocysteine Hydrolase by Derived "Adenosine 5’-Aldehyde" Species. J. Org. Chem. 1994, 59, 544–555. DOI: 10.1021/jo00082a010.
  • Bello, A. M.; Poduch, E.; Fujihashi, M.; Amani, M.; Li, Y.; Crandall, I.; Hui, R.; Lee, P. I.; Kain, K. C.; Pai, E. F.; Kotra, L. P. A Potent, Covalent Inhibitor of Orotidine 5’-Monophosphate Decarboxylase with Antimalarial Activity. J. Med. Chem. 2007, 50, 915–921. DOI: 10.1021/jm060827p.
  • Xu, W.; Chan, K. M.; Kool, E. T. Fluorescent Nucleobases as Tools for Studying DNA and RNA. Nat. Chem. 2017, 9, 1043–1055. DOI: 10.1038/nchem.2859.
  • Wen, Z.; Tuttle, P. R.; Howlader, A. H.; Vasilyeva, A.; Gonzalez, L.; Tangar, A.; Lei, R.; Laverde, E. E.; Liu, Y.; Miksovska, J.; Wnuk, S. F. Fluorescent 5-Pyrimidine and 8-Purine Nucleosides Modified with an N-Unsubstituted 1,2,3-Triazol-4-yl Moiety. J. Org. Chem. 2019, 84, 3624–3631. DOI: 10.1021/acs.joc.8b03135.
  • Bag, S. S.; Gogoi, H. Design of “Click” Fluorescent Labeled 2′-Deoxyuridines via C5-[4-(2-Propynyl(Methyl)Amino)]Phenyl Acetylene as a Universal Linker: Synthesis, Photophysical Properties, and Interaction with BSA. J. Org. Chem. 2018, 83, 7606–7621. DOI: 10.1021/acs.joc.7b03097.
  • Schweizer, M. P.; Witkowski, J. T.; Robins, R. K. Nuclear Magnetic Resonance Determination of Syn and anti Conformations in Pyrimidine Nucleosides. J. Am. Chem. Soc. 1971, 93, 277–279. DOI: 10.1021/ja00730a062.
  • Tanaka, H.; Hayakawa, H.; Miyasaka, T. Lithiation Chemistry of Uridine Derivatives: Access to a New anti-HIV-1 Lead. In Nucleosides and Nucleotides as Antitumor and Antiviral Agents, Chu, C. K.; Baker, D. C., Eds. Springer US: Boston, MA, 1993; pp 23–53
  • Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. DOI: 10.1039/b810189b.
  • Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. GAUSSIAN 16, Revision C.1; Gaussian Inc.: Wallingford, CT, 2019.
  • Groziak, M. P.; Lin, R. The 5′,6-Oxomethylene Transglycosidic Tether for Conformational Restriction of Pyrimidine Ribonucleosides. Investigation of 6-Formyl- and 6-(Hydroxymethyl)Uridine 5′-Carboxaldehydes. Tetrahedron 2000, 56, 9885–9893. DOI: 10.1016/S0040-4020(00)00970-4.
  • Lamparska, K.; Clark, J.; Babilonia, G.; Bedell, V.; Yip, W.; Smith, S. S. 2′-Deoxyriboguanylurea, the Primary Breakdown Product of 5-Aza-2′-Deoxyribocytidine, is a Mutagen, an Epimutagen, an Inhibitor of DNA Methyltransferases and an Inducer of 5-Azacytidine-Type Fragile Sites. Nucleic Acids Res. 2012, 40, 9788–9801. DOI: 10.1093/nar/gks706.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.