55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Time-Dependent Effect of Graphene on the Microbial Activity of the Soil Under Single and Repeated Exposures

, , &

References

  • Buckley, D. H., and T. M. Schmidt. 2003. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5 (6):441–52. doi:10.1046/j.1462-2920.2003.00404.x.
  • Cebron, A., M. P. Norini, T. Beguiristain, and C. Leyval. 2008. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from gram positive and Gram negative bacteria in soil and sediment samples. J. Microbiol. Methods 73 (2):148–59. doi:10.1016/j.mimet.2008.01.009.
  • Fu, T. H., B. G. Zhang, X. Gao, S. Cui, C. -Y. Guan, Y. Zhang, B. Zhang, and Y. Peng. 2023. Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation. Sci. Total Environ. 856:158810. doi:10.1016/j.scitotenv.2022.158810.
  • Gottschalk, F., T. Y. Sun, and B. Nowack. 2013. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ. Pollut. 181:287–300. doi:10.1016/j.envpol.2013.06.003.
  • Griffiths, B. S., H. L. Kuan, K. Ritz, L. A. Glover, A. E. McCaig, and C. Fenwick. 2004. The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil. Microb. Ecol. 47 (1):104–13. doi:10.1007/s00248-002-2043-7.
  • Holden, P. A., F. Klaessig, R. F. Turco, J. H. Priester, C. M. Rico, H. Avila-Arias, M. Mortimer, K. Pacpaco, and J. L. Gardea-Torresdey. 2014. Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: Are they relevant? Environmental Science & Technology 48 (18):10541–51. doi:10.1021/es502440s.
  • Liu, W. J., J. Yao, H. K. Chai, Z. Zhao, C. Zhang, J. Jin, and M. M. F. Choi. 2015. Concentration-dependent effect of photoluminescent carbon dots on the microbial activity of the soil studied by combination methods. Environ. Toxicol. Pharmacol. 39 (2):857–63. doi:10.1016/j.etap.2015.02.009.
  • Luigi, A., C. Nicolò, A. Vassilis, L. E. Anna, and M. Micòl. 2023. Performance of graphene and traditional soil improvers in limiting nutrients and heavy metals leaching from a sandy Calcisol. Sci. Total Environ. 858:159806. doi:10.1016/j.scitotenv.2022.159806.
  • Mai-Prochnow, A., M. Clauson, J. M. Hong, and M. Abjsr. 2016. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep 6 (1):38610. doi:10.1038/srep38610.
  • Mendona, M. C. P., N. P. Rodrigues, M. B. Jesus, and M. J. B. Amorim. 2019. Graphene-based nanomaterials in soil: Ecotoxicity assessment using enchytraeus crypticus reduced full life cycle. Nanomaterials 9 (6):858. doi:10.3390/nano9060858.
  • Premanathan, M., K. Karthikeyan, K. Jeyasubramanian, and G. Manivannan. 2011. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnology, Biology and Medicine 7 (2):184–192. doi:10.1016/j.nano.2010.10.001.
  • Rao, C. N. R., A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj. 2010. Graphene: The new two-dimensional nanomaterial. Angew Chem Int Edit 40 (52). doi:10.1002/chin.200952249.
  • Ren, W. J., G. D. Ren, Y. Teng, Z. G. Li, and L. N. Li. 2015. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. J. Hazard. Mater. 297 (30):286–94. doi:10.1016/j.jhazmat.2015.05.017.
  • Ruiz, O. N., K. A. Fernando, B. Wang, N. A. Brown, P. G. Luo, N. D. McNamara, M. Vangsness, Y. -P. Sun, and C. E. Bunker. 2011. Graphene oxide: A nonspecific enhancer of cellular growth. ACS Nano 5 (10):8100–07. doi:10.1021/nn202699t.
  • Shrestha, B., V. Acosta-Martinez, C. Sb, G. Mj, S. Li, Canas-Carrell, and J. E. Cañas-Carrell. 2013. An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J. Hazard. Mater. 261 (15):188–97. doi:10.1016/j.jhazmat.2013.07.031.
  • Simonin, M., J. M. F. Martins, G. Uzu, E. Vince, and A. Richaume. 2016. Combined study of titanium dioxide nanoparticle transport and toxicity on microbial nitrifying communities under single and repeated exposures in soil columns. Environmental Science & Technology 50 (19):10693–99. doi:10.1021/acs.est.6b02415.
  • Simonin, M., and A. Richaume. 2015. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: A review. Environmental Science and Pollution Research 22 (18):13710–23. doi:10.1007/s11356-015-4171-x.
  • Song, J. F., C. W. Duan, Y. Sang, S. P. Wu, J. X. Ru, and X. Y. Cui. 2018. Effects of graphene on bacterial community diversity and soil environments of haplic cambisols in Northeast China. Forests 9 (11):677. doi:10.3390/f9110677.
  • Spain, A. M., L. R. Krumholz, and M. S. Elshahed. 2009. Abundance, composition, diversity and novelty of soil Proteobacteria. Isme J 3 (8):992–1000. doi:10.1038/ismej.2009.43.
  • Tetrovsky, T., K. T. Steffen, P. Baldrian, and M. Freitag. 2014. Potential of Cometabolic Transformation of Polysaccharides and Lignin in Lignocellulose by soil Actinobacteria. PLoS ONE 9 (2):e89108. doi:10.1371/journal.pone.0089108.
  • Wu, F., S. Jiao, J. Hu, X. Y. Wu, B. Wang, G. Shen, Y. Yang, S. Tao, and X. Wang. 2021. Stronger impacts of long-term relative to short-term exposure to carbon nanomaterials on soil bacterial communities. J. Hazard. Mater. 410:124550. doi:10.1016/j.jhazmat.2020.124550.
  • Zhai, Y., G. Liu, T. Bosker, E. Baas, P. Wjgm, and M. G. Vijver. 2019. Compositional and predicted functional dynamics of soil bacterial community in response to single pulse and repeated dosing of titanium dioxide nanoparticles. NanoImpact 16:100187. doi:10.1016/j.impact.2019.100187.
  • Zhao, D. Q., Z. W. Fang, Y. H. Tang, and J. Tao. 2020. Graphene oxide as an effective soil water retention agent can confer drought stress tolerance to paeonia ostii without toxicity. Environmental Science & Technology 54 (13):8269–79. doi:10.1021/acs.est.0c02040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.