232
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Selenate and Selenite Induced Differential Morphophysiological Modifications to Mitigate Arsenic Toxicity and Uptake by Wheat

ORCID Icon, , , , &

References

  • Abbas, G., B. Murtaza, I. Bibi, M. Shahid, N. K. Niazi, M. I. Khan, M. Amjad, and M. Hussain. 2018. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health 15 (1):59. doi:10.3390/ijerph15010059.
  • Ahmad, A., W. U. Khan, A. A. Shah, N. A. Yasin, S. Naz, A. Ali, A. Tahir, and A. I. Batool. 2021. Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere 262:128384. doi:10.1016/j.chemosphere.2020.128384.
  • Alam, M. Z., R. McGee, M. A. Hoque, G. J. Ahammed, and L. Carpenter-Boggs. 2019. Effect of arbuscular mycorrhizal fungi, selenium and biochar on photosynthetic pigments and antioxidant enzyme activity under arsenic stress in mung bean (Vigna radiata). Frontiers in Physiology 10:193. doi:10.3389/fphys.2019.00193.
  • Ali, H. M. M., and S. Perveen. 2020. Effect of foliar applied triacontanol on wheat (Triticum aestivum L.) under arsenic stress: A study of changes in growth, yield and photosynthetic characteristics. Physiology and Molecular Biology of Plants 26 (6):1215–24. doi:10.1007/s12298-020-00831-0.
  • Ali, J., M. Tuzen, X. Feng, and T. G. Kazi. 2021. Determination of trace levels of selenium in natural water, agriculture soil and food samples by vortex assisted liquid-liquid microextraction method: Multivariate techniques. Food Chemistry 344:128706. doi:10.1016/j.foodchem.2020.128706.
  • Arain, S. M., M. A. Sial, K. A. Leghari, M. Faheem, and K. D. Jamali. 2021. NIA-Shaheen (CIM-04-10): A high-yielding, drought-tolerant wheat variety. Crop Breeding and Applied Biotechnology 21:e365621210.
  • Asgher, M., S. Ahmed, Z. Sehar, H. Gautam, S. G. Gandhi, and N. A. Khan. 2021. Hydrogen peroxide modulates activity and expression of antioxidant enzymes and protects photosynthetic activity from arsenic damage in rice (Oryza sativa L.). Journal of Hazardous Material 401:123365. doi:10.1016/j.jhazmat.2020.123365.
  • Bahar, M. M., M. Megharaj, and R. Naidu. 2013. Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp. isolated from soil. Journal of Applied Phycology 25 (3):913–17. doi:10.1007/s10811-012-9923-0.
  • Bisht, A., . S. Kaur, S. Sharma , A. Bhandawat, S. Bhardwaj, M. Garg, A. K. Pandey, M. Bishnoi, T. R. Sharma, and J. K. Roy. (2021). Wheat Quality Improvement for Micronutrients. In S. H. Wani, A. Mohan, and G. P. Singh (ed.) Physiological, Molecular, and Genetic Perspectives of Wheat Improvement. Springer doi:10.1007/978-3-030-59577-7-3, Cham.
  • Bremner, J. M., and C. S. Mulvaney 1982. Nitrogen-Total. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. In Eds. Page, A.L., Miller, R.H. and Keeney, D.R., 595–624. Madison, Wisconsin: American Society of Agronomy, Soil Science Society of America.
  • De Brito Mateus, M. P., R. F. R. Tavanti, T. R. Tavanti, E. F. Santos, A. Jalal, and A. R. Dos Reis. 2021. Selenium biofortification enhances ROS scavenge system increasing yield of coffee plants. Ecotoxicology and Environmental Safety 209:111772. doi:10.1016/j.ecoenv.2020.111772.
  • Dradrach, A., A. Karczewska, K. Szopka, and K. Lewińska. 2020. Accumulation of arsenic by plants growing in the sites strongly contaminated by historical mining in the Sudetes region of Poland. International Journal of Environmental Research and Public Health 17 (9):3342. doi:10.3390/ijerph17093342.
  • Farooq, M. A., F. Islam, A. Ayyaz, W. Chen, Y. Noor, W. Hu, F. Hannan, and W. Zhou. 2022. Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus. Environmental Pollution 292:118473. doi:10.1016/j.envpol.2021.118473.
  • Feng, R., P. Zhao, Y. Zhu, J. Yang, X. Wei, L. Yang, H. Liu, C. Rensing, and Y. Ding. 2021. Application of inorganic selenium to reduce accumulation and toxicity of heavy metals (metalloids) in plants: The main mechanisms, concerns, and risks. Science of The Total Environment. 771:144776. doi:10.1016/j.scitotenv.2020.144776.
  • Ghorbani, A., M. Tafteh, N. Roudbari, L. Pishkar, W. Zhang, and C. Wu. 2021. Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots. Ecotoxicology and Environmental Safety 209:111793. doi:10.1016/j.ecoenv.2020.111793.
  • Ghosh, S., and A. K. Biswas. 2017. Selenium Modulates Growth and Thiol Metabolism in Wheat (Triticum aestivum L.) during Arsenic Stress. American Journal of Plant Sciences 8 (03):363. doi:10.4236/ajps.2017.83026.
  • Hasanuzzaman, M., M. B. Bhuyan, A. Raza, B. Hawrylak-Nowak, R. Matraszek-Gawron, J. Al Mahmud, K. Nahar, and M. Fujita. 2020. Selenium in plants: Boon or bane? Environmental and Experimental Botany 178:104170. doi:10.1016/j.envexpbot.2020.104170.
  • Hinsinger, P., C. Plassard, and B. Jaillard. 2006. Rhizosphere: A new frontier for soil biogeochemistry. Journal of Geochemical Exploration 88 (1–3):210–13. doi:10.1016/j.gexplo.2005.08.041.
  • Houlihan, J. Arsenic in 9 Brands of Infant Cereal Health Babies Bright Futures. 2017. Available online: http://www.healthybabycereals.org/sites/healthybabycereals.org/files/2017-12/HBBF_ArsenicInInfantCerealReport.pdf (accessed on 18 February 2022).
  • Huang, H., M. Li, M. Rizwan, Z. Dai, Y. Yuan, M. M. Hossain, M. Cao, S. Xiong, and S. Tu. 2021. Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. Journal of Hazardous Material 401:123393. doi:10.1016/j.jhazmat.2020.123393.
  • Hu, L., H. Fan, D. Wu, Y. Liao, F. Shen, W. Liu, R. Huang, B. Zhang, and X. Wang. 2020. Effects of selenium on antioxidant enzyme activity and bioaccessibility of arsenic in arsenic-stressed radish. Ecotoxicology and Environmental Safety 200:110768. doi:10.1016/j.ecoenv.2020.110768.
  • Jones, G. D., B. Droz, P. Greve, P. Gottschalk, D. Poffet, S. P. McGrath, S. I. Seneviratne, P. Smith, and L. H. Winkel. 2017. Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences 114 (11):2848–53. doi:10.1073/pnas.1611576114.
  • Khalofah, A., H. Migdadi, and E. El-Harty. 2021. Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa willd) to exogenous selenium application. Plants 10 (4):719. doi:10.3390/plants10040719.
  • Khan, M. S., A. Soyk, I. Wolf, M. Peter, A. J. Meyer, T. Rausch, M. Wirtz, and R. Hel. 2022. Discriminative long-distance transport of selenate and selenite triggers glutathione oxidation in specific subcellular compartments of root and shoot cells in Arabidopsis. Frontiers in Plant Science 13:2085.
  • Lan, X., J. Li, J. Chen, J. Liu, F. Cao, C. Liao, Z. Zhang, M. Gu, Y. Wei, F. Shen, et al. 2023. Effects of foliar applications of Brassinolide and Selenium on the accumulation of Arsenic and Cadmium in rice grains and an assessment of their health risk. International Journal of Phytoremediation 25 (2):161–71. doi:10.1080/15226514.2022.2066064.
  • Li, X., G. J. Ahammed, X. -N. Zhang, L. Zhang, P. Yan, L. -P. Zhang, J. -Y. Fu, and W. -Y. Han. 2021. Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. Journal of Hazardous Material 403:123922. doi:10.1016/j.jhazmat.2020.123922.
  • Lightenthaler, H. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods of Enzymology 148:350–82.
  • Li, H. F., S. P. McGrath, and F. J. Zhao. 2008. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytologist 178 (1):92–102. doi:10.1111/j.1469-8137.2007.02343.x.
  • Liu, H., C. Xiao, T. Qiu, J. Deng, H. Cheng, X. Cong, S. Cheng, S. Rao, and Y. Zhang. 2023. Selenium Regulates Antioxidant, Photosynthesis, and Cell Permeability in Plants under Various Abiotic Stresses: A Review. Plants 12 (1):44. doi:10.3390/plants12010044.
  • Maghsoudi, A. S., S. Hassani, K. Mirnia, and M. Abdollahi. 2021. Recent advances in nanotechnology-based biosensors development for detection of arsenic, lead, mercury, and cadmium. International Journal of Nanomedicine 16:803–32. doi:10.2147/IJN.S294417.
  • Malik, J. A., S. Goel, N. Kaur, S. Sharma, I. Singh, and H. Nayyar. 2012. Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environmental and Experimental Botany 77:242–48. doi:10.1016/j.envexpbot.2011.12.001.
  • Mayak, S., T. Tirosh, and B. R. Glick. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science 166 (2):525–30. doi:10.1016/j.plantsci.2003.10.025.
  • Meng, X. Y., J. Qin, L. H. Wang, G. L. Duan, G. X. Sun, H. L. Wu, C. C. Chu, H. Q. Ling, B. P. Rosen, and Y. G. Zhu. 2011. Arsenic biotransformation and volatilization in transgenic rice. New Phytologist 191 (1):49–56. doi:10.1111/j.1469-8137.2011.03743.x.
  • Moodie, C. D., H. W. Smith, and R. A. McCreery. 1959. Laboratory Manual for Soil Fertility, 1e75. Washington, USA: Department of Agronomy, State College of Washington Pullman.
  • Moulick, D., D. Ghosh, J. Mandal, S. Bhowmick, D. Mondal, S. Choudhury, S. C. Santra, M. Vithanage, and J. K. Biswas. 2023. A cumulative assessment of plant growth stages and selenium supplementation on arsenic and micronutrients accumulation in rice grains. Journal of Cleaner Production 386:135764. doi:10.1016/j.jclepro.2022.135764.
  • Natasha., B. I., M. Shahid, N. K. Niazi, F. Younas, S. R. Naqvi, S. M. Shaheen, M. Imran, H. Wang, K. M. Hussaini, H. Zhang, et al. 2021. Hydrogeochemical and health risk evaluation of arsenic in shallow and deep aquifers along the different floodplains of Punjab, Pakistan. J. Hazard. Mater. 402:124074.
  • Navarro-Alarcon, M., and C. Cabrera-Vique. 2008. Selenium in food and the human body: A review. Science of the Total Environment 400 (1–3):115–41. doi:10.1016/j.scitotenv.2008.06.024.
  • Neuwirth, L. S., E. Cabañas, P. Cadet, W. Zhu, and M. E. Markowitz. 2022. Cereal and juice, lead and arsenic, our children at risk: A call for the FDA to re-evaluate the allowable limits of lead and arsenic that children may ingest. International Journal of Environmental Research and Public Health 19 (10):5788. doi:10.3390/ijerph19105788.
  • Ning, P., X. Zhang, T. Wu, Y. Li, S. Wang, P. Fei, J. Dong, J. Shi, and X. Tian. 2021. Biofortification of wheat with zinc as affected by foliar applications of zinc, pesticides, phosphorus and biostimulants. Crop and Pasture Science 73 (2):3–12. doi:10.1071/CP20455.
  • Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soils by extraction with NaHCO3. Washington: U.S. USDA Cir.939.
  • Pandey, C., and M. Gupta. 2015. Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. Journal of Hazardous Material 287:384–91. doi:10.1016/j.jhazmat.2015.01.044.
  • Pokhrel, G. R., K. T. Wang, H. Zhuang, Y. Wu, W. Chen, Y. Lan, X. Zhu, Z. Li, F. Fu, and G. Yang. 2020. Effect of selenium in soil on the toxicity and uptake of arsenic in rice plant. Chemosphere 239:124712. doi:10.1016/j.chemosphere.2019.124712.
  • Poli, Y., V. Nallamothu, D. Balakrishnan, P. Ramesh, S. Desiraju, S. K. Mangrauthia, S. R. Voleti, and S. Neelamraju. 2018. Increased catalase activity and maintenance of photosystem II distinguishes high-yield mutants from low-yield mutants of rice var. Nagina22 under low-phosphorus stress. Frontiers in Plant Science 9:1543. doi:10.3389/fpls.2018.01543.
  • Radawiec, A., W. Szulc, and B. Rutkowska. 2021. Selenium biofortification of wheat as a strategy to improve human nutrition. Agriculture 11 (2):144. doi:10.3390/agriculture11020144.
  • Rezaei, H., B. Mehrabi, A. Khanmirzaee, and K. Shahbazi. 2021. Arsenic heavy metal mapping in agricultural soils of Alborz province, Iran. International Journal of Environmental Analytical Chemistry 101 (1):127–39. doi:10.1080/03067319.2019.1661398.
  • Rizwan, M., S. Ali, M. Z. U. Rehman, J. Rinklebe, D. C. Tsang, F. M. Tack, G. H. Abbasi, A. Hussain, A. D. Igalavithana, B. C. Lee, et al. 2021. Effects of selenium on the uptake of toxic trace elements by crop plants: A review. Critical Reviews in Environmental Science and Technology 51 (21):2531–66. doi:10.1080/10643389.2020.1796566.
  • Rostamizadeh, E., A. Iranbakhsh, A. Majd, S. Arbabian, and I. Mehregan. 2021. Physiological and molecular responses of wheat following the foliar application of Iron Oxide nanoparticles. International Journal of Nano Dimension 12 (2):128–34.
  • Sarwar, N., M. Akhtar, M. A. Kamran, M. Imran, M. A. Riaz, K. Kamran, and S. Hussain. 2020. Selenium biofortification in food crops: Key mechanisms and future perspectives. Journal of Food Composition and Analysis 93:103615. doi:10.1016/j.jfca.2020.103615.
  • Sarwar, T., S. Khan, S. Muhammad, and S. Amin. 2021. Arsenic speciation, mechanisms, and factors affecting rice uptake and potential human health risk: A systematic review. Environmental Technology & Innovation 22:101392. doi:10.1016/j.eti.2021.101392.
  • Sattar, T. 2021. Selenium role in reproduction, pregnant/postpartum women and neonates: A current study. Current Nutrition & Food Science 17 (1):28–37. doi:10.2174/1573401316999200423121620.
  • Satti, S. H., N. I. Raja, B. Javed, A. Akram, M. Z-U-R, M. S. Ahmad, M. Ikram, and A. Mukherjee. 2021. Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS ONE 16 (2):e0246880. doi:10.1371/journal.pone.0246880.
  • Schreiber, M. E., and I. M. Cozzarelli. 2021. Arsenic release to the environment from hydrocarbon production, storage, transportation, use and waste management. Journal of Hazardous Material 411:125013. doi:10.1016/j.jhazmat.2020.125013.
  • Shi, G., H. Lu, H. Liu, L. Lou, P. Zhang, G. Song, H. Zhou, and H. Ma. 2020. Sulfate application decreases translocation of arsenic and cadmium within wheat (Triticum aestivum L.) plant. Science of the Total Environment 713:136665. doi:10.1016/j.scitotenv.2020.136665.
  • Sil, P., and A. K. Biswas. 2020. Silicon nutrition modulates arsenic-inflicted oxidative overload and thiol metabolism in wheat (Triticum aestivum L.) seedlings. Environ. Sci. Pollut. Res 27 (36):45209–24. doi:10.1007/s11356-020-10369-z.
  • Simmard, R. R. 1993. Ammonium acetate extractable elements. In Soil Sampling and Methods of Analysis, ed. R. Martin and S. Carter, 39–43. Florida, USA: Lewis Publishers.
  • Singh, R., A. K. Upadhyay, and D. P. Singh. 2018. Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotoxicology and Environmental Safety 148:105–13.
  • Sun, S. -K., X. Xu, Z. Tang, Z. Tang, X. -Y. Huang, M. Wirtz, R. Hell, and F. -J. Zhao. 2021. A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nat. Commun. 12 (1):1–14. doi:10.1038/s41467-021-21282-5.
  • Talukdar, D. 2013. Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiology and Molecular Biology of Plants 19 (1):69–79. doi:10.1007/s12298-012-0140-8.
  • Tyagi, S., K. Singh, S. K. Upadhyay, K. Singh, and S. K. Upadhyay. 2021. Molecular characterization revealed the role of catalases under abiotic and arsenic stress in bread wheat (Triticum aestivum L.). J. Hazard. Mater. 403:123585. doi:10.1016/j.jhazmat.2020.123585.
  • Ullah, S., R. Ali, S. Mahmood, M. Atif Riaz, and K. Akhtar. 2020. Differential growth and metal accumulation response of Brachiaria mutica and Leptochloa fusca on cadmium and lead contaminated soil. Soil and Sediment Contam.: Int. J. 29 (8):844–59. doi:10.1080/15320383.2020.1777935.
  • Ullah, S., Z. Iqbal, S. Mahmood, K. Akhtar, and R. Ali. 2020. Phytoextraction potential of different grasses for the uptake of cadmium and lead from industrial wastewater. Soil & Environment 39 (1):77–86. doi:10.25252/SE/2020/91796.
  • Ullah, S., S. Mahmood, R. Ali, M. R. Khan, K. Akhtar, and N. Depar. 2021. Comparing chromium phyto-assessment in Brachiaria mutica and Leptochloa fusca growing on chromium polluted soil. Chemosphere 269:128728. doi:10.1016/j.chemosphere.2020.128728.
  • Ullah, S., T. Mahmood, Z. Iqbal, A. Naeem, R. Ali, and S. Mahmood. 2019. Phytoremediative potential of salt-tolerant grass species for cadmium and lead under contaminated nutrient solution. International Journal of Phytoremediation 21 (10):1012–18. doi:10.1080/15226514.2019.1594683.
  • Ullah, S., A. Naeem, I. Calkaite, A. Hosney, N. Depar and K. Barcauskaite. 2023. Zinc (Zn) mitigates copper (Cu) toxicity and retrieves yield and quality of lettuce irrigated with Cu and Zn-contaminated simulated wastewater. Environmental Science and Pollution Research. 30:54800–54812. doi:10.1007/s11356-023-26250-81-13.
  • Upadhyay, M. K., A. Majumdar, A. Barla, S. Bose, and S. Srivastava. 2019. An assessment of arsenic hazard in groundwater–soil–rice system in two villages of Nadia district, West Bengal, India. Environmental Geochemistry and Health 41 (6):2381–95. doi:10.1007/s10653-019-00289-4.
  • Wang, M., F. Ali, M. Qi, Q. Peng, M. Wang, G. S. Bañuelos, S. Miao, Z. Li, Q. T. Dinh, and D. Liang. 2021. Insights into uptake, accumulation, and subcellular distribution of selenium among eight wheat (Triticum aestivum L.) cultivars supplied with selenite and selenate. Ecotoxicology and Environmental Safety 207:111544. doi:10.1016/j.ecoenv.2020.111544.
  • Wang, K., Y. Wang, Y. Wan, Z. Mi, Q. Wang, Q. Wang, and H. Li. 2021. The fate of arsenic in rice plants (Oryza sativa L.): Influence of different forms of selenium. Chemosphere 264:128417. doi:10.1016/j.chemosphere.2020.128417.
  • WHO.2008World Health Organization, Guidelines for drinking-water quality, Recommendations, 3rd ed., p. 668 vol. 2. Retrieved from April 20, 2021 https://www.who.int/water-sanitation-health/publications/gdwq3/en/
  • Wu, Y., X. Li, L. Yu, T. Wang, J. Wang, and T. Liu. 2022. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Resources, Conservation and Recycling 181:106261. doi:10.1016/j.resconrec.2022.106261.
  • Yadav, M. K., D. Saidulu, A. K. Gupta, P. S. Ghosal, and A. Mukherjee. 2021. Status and management of arsenic pollution in groundwater: A comprehensive appraisal of recent global scenario, human health impacts, sustainable field-scale treatment technologies. J. Environ. Chem. Eng. 9 (3):105203. doi:10.1016/j.jece.2021.105203.
  • Yin, H., Z. Qi, M. Li, G. J. Ahammed, X. Chu, and J. Zhou. 2019. Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicology and Environmental Safety 169:911–17. doi:10.1016/j.ecoenv.2018.11.080.
  • Yu, S., C. Zhang, L. Ma, P. Tan, Q. Fang, and G. Chen. 2021. Deep insight into the effect of NaCl/HCl/SO2/CO2 in simulated flue gas on gas-phase arsenic adsorption over mineral oxide sorbents. J. Hazard. Mater. 403:123617. doi:10.1016/j.jhazmat.2020.123617.
  • Zeng, H., E. O. Uthus, and G. F. Combs Jr. 2005. Mechanistic aspects of the interaction between selenium and arsenic. J. Inorg. Biochem. 99 (6):1269–74. doi:10.1016/j.jinorgbio.2005.03.006.
  • Zhang, H., B. Du, S. Jiang, J. Zhu, and Q. Wu. 2023. Potential Assessment of Selenium for Improving Nitrogen Metabolism, Yield and Nitrogen Use Efficiency in Wheat. Agronomy 13 (1):110. doi:10.3390/agronomy13010110.
  • Zhou, J., C. Zhang, B. Du, H. Cui, X. Fan, D. Zhou, and J. Zhou. 2021. Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: Comparison of soft vs. durum wheat varieties. J. Hazard. Mater. 402:123546. doi:10.1016/j.jhazmat.2020.123546.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.