223
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The Residual Impact of Goethite-Modified Biochar on Cadmium and Arsenic Uptake by Maize in Co-Contaminated Soil

, , , &

References

  • Abdelrhman, F., J. Gao, U. Ali, N. Wan, and H. Hu. 2022. Assessment of goethite-combined/modified biochar for cadmium and arsenic remediation in alkaline paddy soil. Environmental Science and Pollution Research 29 (27):40745–54. doi:10.1007/s11356-021-17968-4.
  • Abdelrhman, F., J. Gao, U. Ali, N. Wan, A. Sharaf, and H. Hu. 2022. Assessment of goethite modified biochar on the immobilization of cadmium and arsenic and uptake by Chinese cabbage in paddy soil. Archives of Agronomy and Soil Science 69 (7):1–16. doi:10.1080/03650340.2022.2050370.
  • Abit, S. M., C. H. Bolster, P. Cai, and S. L. Walker. 2012. Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil. Environmental Science and Technology 46 (15):8097–105. doi:10.1021/es300797z.
  • Ahmad, M. T., H. N. Asghar, M. Saleem, M. Y. Khan, and Z. A. Zahir. 2015. Synergistic effect of rhizobia and biochar on growth and physiology of maize. Agronomy Journal 107 (6):2327–34. doi:10.2134/agronj15.0212.
  • Akgül, G., T. B. Maden, E. Diaz, and E. M. Jiménez. 2019. Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO43− and Cd2+ from aqueous solutions. Journal of Water Reuse and Desalination 9 (1):57–66. doi:10.2166/wrd.2018.018.
  • Ali, U., M. Shaaban, S. Bashir, M. A. Chhajro, L. Qian, M. S. Rizwan, Q. Fu, J. Zhu, and H. Hu. 2021. Potential of organic and inorganic amendments for stabilizing nickel in acidic soil, and improving the nutritional quality of spinach. Environmental Science and Pollution Research 28 (41):57769–80. doi:10.1007/s11356-021-14611-0.
  • Ali, U., M. Shaaban, S. Bashir, Q. Fu, J. Zhu, M. S. Islam, and H. Hu. 2020. Effect of rice straw, biochar and calcite on maize plant and Ni bio-availability in acidic Ni contaminated soil. Journal Environmental Manage 259:109674. doi:10.1016/j.jenvman.2019.109674.
  • Bashir, S., Q. Hussain, M. Shaaban, and H. Hu. 2018. Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. Chemosphere 211:632–39. doi:10.1016/j.chemosphere.2018.07.168.
  • Bashir, A., M. Rizwan, S. Ali, M. Zia Ur Rehman, W. Ishaque, M. Atif Riaz, and A. Maqbool. 2018. Effect of foliar-applied iron complexed with lysine on growth and cadmium (Cd) uptake in rice under Cd stress. Environmental Science and Pollution Research 25 (21):20691–99. doi:10.1007/s11356-018-2042-y.
  • Bashir, S., A. Salam, M. Rehman, S. Khan, A. B. Gulshan, J. Iqbal, M. Shaaban, S. Mehmood, A. Zahra, and H. Hu. 2019. Effective role of biochar, zeolite and steel slag on leaching behavior of Cd and its fractionations in soil column study. Bull Environ Contam Toxicol 102 (4):567–72. doi:10.1007/s00128-019-02573-6.
  • Beesley, L., M. Marmiroli, L. Pagano, V. Pigoni, G. Fellet, T. Fresno, T. Vamerali, M. Bandiera, and N. Marmiroli. 2013. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Science of the Total Environment 454-455:598–603. doi:10.1016/j.scitotenv.2013.02.047.
  • Briat, J. F., C. Curie, and F. Gaymard. 2007. Iron utilization and metabolism in plants. Current Opinion Plant Biology 10 (3):276–82. doi:10.1016/j.pbi.2007.04.003.
  • Cai, L. M., Z. C. Xu, J. Y. Qi, Z. Z. Feng, and T. S. Xiang. 2015. Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China. Chemosphere 127:127–35. doi:10.1016/j.chemosphere.2015.01.027.
  • Cao, X., X. Gao, X. Zeng, Y. Ma, Y. Gao, W. Baeyens, Y. Jia, J. Liu, C. Wu, and S. Su. 2021. Seeking for an optimal strategy to avoid arsenic and cadmium over-accumulation in crops: Soil management vs cultivar selection in a case study with maize. Chemosphere 272:129891. doi:10.1016/j.chemosphere.2021.129891.
  • Cheng, C. H., J. Lehmann, J. E. Thies, S. D. Burton, and M. H. Engelhard. 2006. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37 (11):1477–88. doi:10.1016/j.orggeochem.2006.06.022.
  • Fan, J., X. Chen, Z. Xu, X. Xu, L. Zhao, H. Qiu, and X. Cao. 2020. One-pot synthesis of Nzvi-embedded biochar for remediation of two mining arsenic-contaminated soils: Arsenic immobilization associated with iron transformation. Journal of the Hazardous Materials 398:122901. doi:10.1016/j.jhazmat.2020.122901.
  • Fresno, T., E. Moreno-Jiménez, P. Zornoza, and J. M. Peñalosa. 2018. Aided phytostabilization of as and Cu contaminated soils using white lupin and combined iron and organic amendments. Journal Environmental Management 205:142–50. doi:10.1016/j.jenvman.2017.09.069.
  • Gao, R., H. Hu, Q. Fu, Z. Li, Z. Xing, U. Ali, J. Zhu, and Y. Liu. 2020. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry. Science of the Total Environment 730:139119. doi:10.1016/j.scitotenv.2020.139119.
  • Garg, N., and P. Singla. 2011. Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environmental chemistry letters 9 (3):303–21. doi:10.1007/s10311-011-0313-7.
  • Guo, X., H. Dong, C. Yang, Q. Zhang, C. Liao, F. Zha, and L. Gao. 2016. Application of goethite modified biochar for tylosin removal from aqueous solution. Colloids Surface A Physicochemical Engineering Asp. 502:81–88. doi:10.1016/j.colsurfa.2016.05.015.
  • Hafeez, F., M. Rizwan, M. Saqib, T. Yasmeen, S. Ali, T. Abbas, M. Zia Ur Rehman, and M. F. Qayyum. 2019. Residual effect of biochar on growth, antioxidant defence and cadmium (Cd) accumulation in rice in a Cd contaminated saline soil. Pakistan Journal Agricultural Science 56 (1):197–204. doi:10.21162/PAKJAS/19.7546.
  • Hartley, W., and N. W. Lepp. 2008. Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Science of the Total Environment 390 (1):35–44. doi:10.1016/j.scitotenv.2007.09.021.
  • Hussain, M., M. Farooq, A. Nawaz, A. M. Al-Sadi, Z. M. Solaiman, S. S. Alghamdi, U. Ammara, Y. S. Ok, and K. H. M. Siddique. 2017. Biochar for crop production: Potential benefits and risks. Journal Soils Sediments 17 (3):685–716. doi:10.1007/s11368-016-1360-2.
  • Irfan, M., F. Ishaq, D. Muhammad, M. J. Khan, I. A. Mian, K. M. Dawar, A. Muhammad, M. Ahmad, S. Anwar, S. Ali, et al. 2021. Effect of wheat straw derived biochar on the bioavailability of Pb, Cd and Cr using maize as test crop. Journal of Saudi Chemical Society 25 (5):101232. doi:10.1016/j.jscs.2021.101232.
  • Irfan, M., M. Mudassir, M. J. Khan, K. M. Dawar, D. Muhammad, I. A. Mian, W. Ali, S. Fahad, S. Saud, Z. Hayat, et al. 2021. Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Scientic Reports 11 (1):1–9. doi:10.1038/s41598-021-97525-8.
  • Irshad, M. K., C. Chen, A. Noman, M. Ibrahim, M. Adeel, and J. Shang. 2020. Goethite-modified biochar restricts the mobility and transfer of cadmium in soil-rice system. Chemosphere 242:125152. doi:10.1016/j.chemosphere.2019.125152.
  • Irshad, M. K., A. Noman, H. A. S. Alhaithloul, M. Adeel, Y. Rui, T. Shah, S. Zhu, and J. Shang. 2020. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and as co-contaminated paddy soil. Science of the Total Environmental 717:137086. doi:10.1016/j.scitotenv.2020.137086.
  • Islam, M. S., R. L. Gao, J. Y. Gao, Z. T. Song, U. Ali, and H. Hu. 2022. Cadmium, lead, and zinc immobilization in soil using rice husk biochar in the presence of citric acid. International Journal Environmental Science Technology 19 (1):567–80. doi:10.1007/s13762-021-03185-6.
  • Islam, M. S., Z. Song, R. Gao, Q. Fu, and H. Hu. 2022. Cadmium, lead, and zinc immobilization in soil by rice husk biochar in the presence of low molecular weight organic acids. Environmental Technology 43 (16):2516–29. doi:10.1080/09593330.2021.1883743.
  • Kabata-Pendias, A. 2000. Trace elements in soils and plants. CRC Press. doi:10.1201/9781420039900.
  • Kamran, M., Z. Malik, A. Parveen, Y. Zong, G. H. Abbasi, M. T. Rafiq, M. Shaaban, A. Mustafa, S. Bashir, M. Rafay, et al. 2019. Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi (Brassica chinensis L.) cultivated in Cd-polluted soil. Journal Environmental Management 250:109500. doi:10.1016/j.jenvman.2019.109500.
  • Khandelwal, N., M. P. Behera, J. K. Rajak, and G. K. Darbha. 2020. Biochar–nZVI nanocomposite: Optimization of grain size and Fe0 loading, application and removal mechanism of anionic metal species from soft water, hard water and groundwater. Clean Technologies and Environmental Policy 22 (5):1015–24. doi:10.1007/s10098-020-01846-7.
  • Li, S., X. Ma, Z. Ma, X. Dong, Z. Wei, X. Liu, and L. Zhu. 2021. Mg/al-layered double hydroxide modified biochar for simultaneous removal phosphate and nitrate from aqueous solution. Environmental Technology and Innovation 23:101771. doi:10.1016/j.eti.2021.101771.
  • Liu, K., F. Li, J. Cui, S. Yang, and L. Fang. 2020. Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms. Journal Hazardwards Materials 395:122623. doi:10.1016/j.jhazmat.2020.122623.
  • Liu, Q., X. Li, J. Tang, Y. Zhou, Q. Lin, R. Xiao, and M. Zhang. 2019. Characterization of goethite-fulvic acid composites and their impact on the immobility of Pb/Cd in soil. Chemosphere 222:556–63. doi:10.1016/j.chemosphere.2019.01.171.
  • Liu, L., J. Li, G. Wu, H. Shen, G. Fu, and Y. Wang. 2021. Combined effects of biochar and chicken manure on maize (Zea mays L.) growth, lead uptake and soil enzyme activities under lead stress. Peer Journal 9:e11754. doi:10.7717/peerj.11754.
  • Liu, W. J., Y. G. Zhu, F. A. Smith, and S. E. Smith. 2004. Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytologist 162 (2):481–88. doi:10.1111/j.1469-8137.2004.01035.x.
  • Li, J., Y. Wei, L. Zhao, J. Zhang, Y. Shangguan, F. Li, and H. Hou. 2014. Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure. Ecotoxicology and Environmental Safety 110:308–15. doi:10.1016/j.ecoenv.2014.09.009.
  • Li, L., C. Zhu, X. Liu, F. Li, H. Li, and J. Ye. 2018. Biochar amendment immobilizes arsenic in farmland and reduces its bioavailability. Environmental Science and Pollution Research 25 (34):34091–102. doi:10.1007/s11356-018-3021-z.
  • Mbodji, M., N. Baskali-Bouregaa, F. Barbier-Bessueille, L. Ayouni-Derouiche, C. Diop, M. Fall, and N. Gilon. 2022. Speciation of metals by sequential extractions of agricultural soils located near a dumpsite for prediction of element availability to vegetables. Talanta 244:123411. doi:10.1016/j.talanta.2022.123411.
  • Mesnoua, M., E. Mateos-Naranjo, J. M. Barcia-Piedras, J. A. Pérez-Romero, B. Lotmani, and S. Redondo-Gómez. 2016. Physiological and biochemical mechanisms preventing Cd-toxicity in the hyperaccumulator Atriplex halimus L. Plant Physiology and Biochemistry 106:30–38. doi:10.1016/j.plaphy.2016.04.041.
  • Mitzia, A., M. Vítková, and M. Komárek. 2020. Assessment of biochar and/or nano zero-valent iron for the stabilization of Zn, Pb and Cd: A temporal study of solid phase geochemistry under changing soil conditions. Chemosphere 242:125248. doi:10.1016/j.chemosphere.2019.125248.
  • Mohamed, I., G. Zhang, Z. Li, Y. Liu, F. Chen, and K. Dai. 2015. Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecological Engineering 84:67–76. doi:10.1016/j.ecoleng.2015.07.009.
  • Nawaz, M., X. Wang, M. H. Saleem, M. H. U. Khan, J. Afzal, S. Fiaz, S. Ali, H. Ishaq, A. H. Khan, N. Rehman, et al. 2021. Deciphering plantago ovata forsk leaf extract mediated distinct germination, growth and physio-biochemical improvements under water stress in maize (zea mays l.) at early growth stage. Agronomy 11(7):1404. doi:10.3390/agronomy11071404.
  • Nguyen, T. H., T. H. Pham, H. T. Nguyen Thi, T. N. Nguyen, M. V. Nguyen, T. TranDinh, M. P. Nguyen, T. Q. Do, T. Phuong, T. T. Hoang, et al. 2019. Synthesis of iron-modified biochar derived from rice straw and its application to arsenic removal. Journal Chemistry 2019:1–8. doi:10.1155/2019/5295610.
  • Oustriere, N., L. Marchand, W. Galland, L. Gabbon, N. Lottier, M. Motelica, and M. Mench. 2016. Influence of biochars, compost and iron grit, alone and in combination, on copper solubility and phytotoxicity in a Cu-contaminated soil from a wood preservation site. Science of the Total Environmental 566-567:816–25. doi:10.1016/j.scitotenv.2016.05.091.
  • Rafique, M., I. Ortas, M. Rizwan, H. J. Chaudhary, A. R. Gurmani, and M. F. H. Munis. 2020. Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (Zea mays L.) amended with microbes in texturally different soils. Chemosphere 238:238. doi:10.1016/j.chemosphere.2019.124710.
  • Razzaq, S., B. Zhou, M. Zia-Ur-Rehman, M. Aamer Maqsood, S. Hussain, G. Bakhsh, Z. Zhang, Q. Yang, and A. R. Altaf. 2022. Cadmium stabilization and redox transformation mechanism in maize using nanoscale zerovalent-iron-enriched biochar in cadmium-contaminated soil. Plants 11 (8):1074. doi:10.3390/plants11081074.
  • Rehman, M. Z., M. Rizwan, A. Hussain, M. Saqib, S. Ali, M. I. Sohail, M. Shafiq, and F. Hafeez. 2018. Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil. Environmental of the Pollution 241:557–65. doi:10.1016/j.envpol.2018.06.005.
  • Rizwan, M., S. Ali, T. Abbas, M. Adrees, M. Zia-Ur-Rehman, M. Ibrahim, F. Abbas, M. F. Qayyum, and R. Nawaz. 2018. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. Journal Environmental Management 206:676–83. doi:10.1016/j.jenvman.2017.10.035.
  • Rizwan, M., S. Ali, T. Abbas, M. Z. Rehman, and M. I. Al-Wabel. 2018. Residual impact of biochar on cadmium uptake by rice (Oryza sativa L.) grown in Cd-contaminated soil. Arabian Journal of Geosciences 11 (20):1–8. doi:10.1007/s12517-018-3974-8.
  • Rizwan, M., S. Ali, M. Ibrahim, M. Farid, M. Adrees, S. A. Bharwana, M. Zia-Ur-Rehman, M. F. Qayyum, and F. Abbas. 2015. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environmental Science and Pollution Research 22 (20):15416–31. doi:10.1007/s11356-015-5305-x.
  • Rizwan, M., S. Ali, M. F. Qayyum, M. Ibrahim, M. Zia-Ur-Rehman, T. Abbas, and Y. S. Ok. 2016. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review. Environmental Science and Pollution Research 23 (3):2230–48. doi:10.1007/s11356-015-5697-7.
  • Ronzan, M., L. Zanella, L. Fattorini, F. Della Rovere, D. Urgast, S. Cantamessa, A. Nigro, M. Barbieri, L. Sanità di Toppi, G. Berta, et al. 2017. The morphogenic responses and phytochelatin complexes induced by arsenic in Pteris vittata change in the presence of cadmium. Environmental and Experimental Botany 133:176–87. doi:10.1016/j.envexpbot.2016.10.011.
  • Saleem, M. H., A. Parveen, S. U. Khan, I. Hussain, X. Wang, H. Alshaya, M. A. El-Sheikh, and S. Ali. 2022. Silicon fertigation regimes attenuates cadmium toxicity and phytoremediation potential in two maize (Zea mays L.) cultivars by minimizing its uptake and oxidative stress. Sustainability 14 (3):1462. doi:10.3390/su14031462.
  • Srivastava, V., P. Maydannik, Y. C. Sharma, and M. Sillanpää. 2015. Synthesis and application of polypyrrole coated tenorite nanoparticles (PPy@TN) for the removal of the anionic food dye ‘tartrazine’ and divalent metallic ions viz. Pb(ii), Cd(ii), Zn(ii), Co(ii), Mn(ii) from synthetic wastewater. RSC Advances 5 (98):80829–43. doi:10.1039/c5ra14108g.
  • Tang, X., H. Shen, M. Chen, X. Yang, D. Yang, F. Wang, Z. Chen, X. Liu, H. Wang, and J. Xu. 2020. Achieving the safe use of Cd- and As-contaminated agricultural land with an Fe-based biochar: A field study. Science Of The Total Environmental 706:135898. doi:10.1016/j.scitotenv.2019.135898.
  • Wang, P., H. Chen, P. M. Kopittke, and F. J. Zhao. 2019. Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental pollution 249:1038–48. doi:10.1016/j.envpol.2019.03.063.
  • Yang, X., M. Hinzmann, H. Pan, J. Wang, N. S. Bolan, D. C. W. Tsang, Y. S. Ok, S. Wang, S. M. Shaheen, H. Wang, et al. 2022. Pig carcass-derived biochar caused contradictory effects on arsenic mobilization in a contaminated paddy soil under fluctuating controlled redox conditions. Journal of hazardous materials 421:126647. doi:10.1016/j.jhazmat.2021.126647.
  • Yang, F., S. Zhang, H. Li, S. Li, K. Cheng, J. S. Li, and D. C. W. Tsang. 2018. Corn straw-derived biochar impregnated with α-FeOOH nanorods for highly effective copper removal. Chemical Engineering Journal 348:191–201. doi:10.1016/j.cej.2018.04.161.
  • Yin, D., X. Wang, C. Chen, B. Peng, C. Tan, and H. Li. 2016. Varying effect of biochar on Cd, Pb and as mobility in a multi-metal contaminated paddy soil. Chemosphere 152:196–206. doi:10.1016/j.chemosphere.2016.01.044.
  • Zhang, X., D. D. Gang, P. Sun, Q. Lian, and H. Yao. 2021. Goethite dispersed corn straw-derived biochar for phosphate recovery from synthetic urine and its potential as a slow-release fertilizer. Chemosphere 262:127861. doi:10.1016/j.chemosphere.2020.127861.
  • Zhang, W., X. Tan, Y. Gu, S. Liu, Y. Liu, X. Hu, J. Li, Y. Zhou, S. Liu, and Y. He. 2020. Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. Chemosphere 250:126268. doi:10.1016/j.chemosphere.2020.126268.
  • Zhao, Y., F. Liu, and X. Qin. 2017. Adsorption of diclofenac onto goethite: Adsorption kinetics and effects of pH. Chemosphere 180:373–78. doi:10.1016/j.chemosphere.2017.04.007.
  • Zheng, X. J., M. Chen, J. F. Wang, Y. Liu, Y. Q. Liao, and Y. C. Liu. 2020. Assessment of zeolite, biochar, and their combination for stabilization of multimetal-contaminated soil. ACS Omega 5 (42):27374–82. doi:10.1021/acsomega.0c03710.
  • Zhu, S., T. Qu, M. K. Irshad, and J. Shang. 2020. Simultaneous removal of Cd(II) and As(III) from co-contaminated aqueous solution by α-FeOOH modified biochar. Biochar 2 (1):81–92. doi:10.1007/s42773-020-00040-8.
  • Zhu, S., J. Zhao, N. Zhao, X. Yang, C. Chen, and J. Shang. 2020. Goethite modified biochar as a multifunctional amendment for cationic Cd(II), anionic As(III), roxarsone, and phosphorus in soil and water. Journal of Cleaner Production 247:119579. doi:10.1016/j.jclepro.2019.119579.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.