84
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Biostimulation of Petroleum-Contaminated Soils with Synthetic and Natural Sources of NPK Fertilizer

&

References

  • Abid, A., Zaafouri, K. Aydi, A. Manai, I. Trabesli, A. B. H. Messaoud, C. Hamdi, M. 2014. Feasibility of a bioremediation process using biostimulation with inorganic nutrient NPK for hydrocarbon contaminated soil in Tunisia. J. of Bioremed. & Biodegred. 5 (4):1.
  • Abrusci, C., A. Martín-González, A. D. Amo, F. Catalina, J. Collado, and G. Platas. 2005. Isolation and identification of bacteria and fungi from cinematographic films. Inter. Biodeter. & Biodegrad. 56 (1):58–68. doi:10.1016/j.ibiod.2005.05.004.
  • Agarry, S. E., and O. O. Ogunleye. 2012. Box-Behnken design application to study enhanced bioremediation of soil artificially contaminated with spent engine oil using biostimulation strategy. Int. J. Energy Environ. Eng. 3 (1):1–14. doi:10.1186/2251-6832-3-31.
  • Al-Dhabaan, F. A. 2019. Morphological, biochemical and molecular identification of petroleum hydrocarbons biodegradation bacteria isolated from oil polluted soil in Dhahran, Saud Arabia. Saudi Journal of Biolog. Sciences 26 (6):1247–52. doi:10.1016/j.sjbs.2018.05.029.
  • Asadu, C. O., N. G. Aneke, A. C. Agulanna, and C. Eze. 2017. Degradation of sawdust by thermo tolerant microorganisms for bio fertilizer synthesis. Asian J. of Biotech. and Biores. Tech. 2 (3):1–7. doi:10.9734/AJB2T/2017/38659.
  • Bao, M. -T., L. -N. Wang, P. -Y. Sun, L. -X. Cao, J. Zou, and Y. -M. Li. 2012. Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Mar. Pollut. Bull. 64 (6):1177–85. doi:10.1016/j.marpolbul.2012.03.020.
  • Callaham, M. A., A. J. Stewart, C. Alarcón, and S. J. McMillen. 2002. Effects of earthworm (Eisenia fetida) and wheat (Triticum aestivum) straw additions on selected properties of petroleum‐contaminated soils. Environ. Toxic. and Chem.: An Inter. J. 21 (8):1658–63. doi:10.1002/etc.5620210817.
  • Cheesbrough, M. 1981. Medical laboratory manual for tropical countries. M. Cheesbrough, 14 Bevills Close Doddington, Cambridgeshire: PE15 OTT.
  • Chen, M., P. Xu, G. Zeng, C. Yang, D. Huang, and J. Zhang. 2015. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv. 33 (6):745–55. doi:10.1016/j.biotechadv.2015.05.003.
  • Dehnavi, S., and G. Ebrahimipour. 2022. Comparative remediation rate of biostimulation, bioaugmentation, and phytoremediation in hydrocarbon contaminants. Int. J. Environ. Sci. Technol. 19 (11):11561–86. doi:10.1007/s13762-022-04343-0.
  • Dela Cruz, T. E. E., and J. M. O. Torres. 2012. Gelatin hydrolysis test protocol. Am Soc Microbiol.
  • Dochukwu, U., O. Udinyiwe, O. Adeghe, and F. Omeje. 2014. Comparative effects of mashed mushroom and NPK Fertilizer on the bioremediation of crude oil polluted soil. Inter. J. of Current Microbio. and Appl. Scien. 3 (10):65–70.
  • Durak, A., E. Buyukguner, and H. Dogan. 2010. Determination of physical and chemical properties of the soils under different land managements. Asian J. Chem. 22 (8):6375–86.
  • Ezekoye, C. C., R. A. Ebiokpo, and A. A. Ibiene. 2015. Bioremediation of hydrocarbon polluted mangrove swamp soil from the Niger Delta using organic and inorganic nutrients. British Biotech. J. 6 (2):62. doi:10.9734/BBJ/2015/15083.
  • Garcia, L. S. 2010. Clinical microbiology procedures handbook. Washington, DC: American Society for Microbiology Press.
  • Gayathiri, E., B. Bharathib, S. Selvadhas, and R. Kalaikandhan. 2017. Isolation, Identification and molecular characterization of hydrocarbon degrading bacteria and its associated genes-a review. Inter. J. of Pharm. and Biolog. Scien. 8 (2):1010–19. doi:10.22376/ijpbs.2017.8.2.b1010-1019.
  • Hanson, A. 2008. Oxidative-fermentative test protocol. ed: Am Soc Microbiol.
  • Hassanshahian, M., G. Emtiazi, R. K. Kermanshahi, and S. Cappello. 2010. Comparison of oil degrading microbial communities in sediments from the Persian Gulf and Caspian Sea. Soil & Sed. Cont. 19 (3):277–91. doi:10.1080/15320381003695215.
  • Huang, Y., H. Pan, Q. Wang, Y. Ge, W. Liu, and P. Christie. 2019. Enrichment of the soil microbial community in the bioremediation of a petroleum-contaminated soil amended with rice straw or sawdust. Chemosphere 224:265–71. doi:10.1016/j.chemosphere.2019.02.148.
  • Kalantary, R. R., A. Mohseni-Bandpi, A. Esrafili, S. Nasseri, F. R. Ashmagh, S. Jorfi, and M. Ja’fari. 2014. Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil. J. Environ. Health Sci. Eng. 12 (1):1–9. doi:10.1186/s40201-014-0143-1.
  • Kaushal, J., S. Mehandia, G. Singh, A. Raina, and S. K. Arya. 2018. Catalase enzyme: Application in bioremediation and food industry. Bioca. and Agri. Biotech. 16:192–99. doi:10.1016/j.bcab.2018.07.035.
  • Kojuri, M., and F. Ardestani. 2018. Isolation, identification and evaluation of oil hydrocarbon decomposing bacteria from contaminated areas of oil fields. Adv. in Environ. Tech. 4 (3):139–47.
  • Kumari, N., A. Vashishtha, P. Saini, and E. Menghani. 2013. Isolation, identification and characterization of oil degrading bacteria isolated from the contaminated sites of Barmer, Rajasthan. Inter. J. of Biotech. and Bioeng. Res. 4 (5):429–36.
  • Kuppusamy, S., P. Thavamani, K. Venkateswarlu, Y. B. Lee, R. Naidu, and M. Megharaj. 2017. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere 168:944–68. doi:10.1016/j.chemosphere.2016.10.115.
  • Margesin, R., and F. Schinner. 1999. A feasibility study for the in situ remediation of a former tank farm. World J. Microbiol. Biotechnol. 15 (5):615–22. doi:10.1023/A:1008994422216.
  • Musa, M. A. I. 2014. Diagnostic accuracy of biopsy urease test in diagnosis of gastritis among patients attending gastroenterology units in Khartoum State. Khartoum, Sudan: Sudan University of Science & Technology.
  • Nduka, J. K., L. N. Umeh, I. O. Okerulu, L. N. Umedum, and H. N. Okoye. 2012. Utilization of different microbes in bioremediation of hydrocarbon contaminated soils stimulated with inorganic and organic fertilizers. J. Pet. Environ. Biotechnol. 3 (2):1–9. doi:10.4172/2157-7463.1000116.
  • Pringgenies, D., E. I. Retnowati, D. Ariyanto, K. Dewi, M. A. Viharyo, and R. Susilowati. 2020. Symbiotic microbes from various seaweeds with antimicrobial and fermentative properties. Aqua., Aquari., Conserv. & Legis. 13 (4):2211–17.
  • Reiner, K. 2010. Catalase test protocol. American Soci for Microbio 1–6.
  • Sawian, P., K. J. Nongkynrih, U. Anand, and A. A. Charan. 2018. Biochemical tests performed for the identification of the isolates collected from local rice beer (Kiad). J. of Pharmaco. and Phytochem. 7 (1):395–97.
  • Shahsavari, E., E. M. Adetutu, P. A. Anderson, and A. S. Ball. 2013. Necrophytoremediation of phenanthrene and pyrene in contaminated soil. J. Environ. Manage. 122:105–12. doi:10.1016/j.jenvman.2013.02.050.
  • Shahsavari, E., G. Poi, A. Aburto-Medina, N. Haleyur, and A. S. Ball. 2017. Bioremediation approaches for petroleum hydrocarbon-contaminated environments. In Enhancing cleanup of environmental pollutants, edited by Naser A. Anjum, Sarvajeet Singh Gill, Narendra Tuteja, 21–41. Cham, Switzerland: Springer.
  • Shields, P., and L. Cathcart. 2010. Oxidase test protocol. American Soci for Microbio. 1–9.
  • Sigmon, J. 2008. The starch hydrolysis test. American Society for Microbiology (ASM).
  • Silaban, S., D. B. Marika, and M. Simorangkir 2020. Isolation and characterization of amylase-producing amylolytic bacteria from rice soil samples. J. Phys. Conf. Ser.14851. IOP Publishing:012006. doi:10.1088/1742-6596/1485/1/012006.
  • Singh, A., and O. P. Ward. 2004. Applied bioremediation and phytoremediation. Berlin, Heidelberg: Springer Science & Business Media.
  • Taccari, M., V. Milanovic, F. Comitini, C. Casucci, and M. Ciani. 2012. Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Inter. Biodeter. & Biodegrad. 66 (1):39–46. doi:10.1016/j.ibiod.2011.09.012.
  • Tahhan, R. A., T. G. Ammari, S. J. Goussous, and H. I. Al-Shdaifat. 2011. Enhancing the biodegradation of total petroleum hydrocarbons in oily sludge by a modified bioaugmentation strategy. Inter. Biodeter. & Biodegrad. 65 (1):130–34. doi:10.1016/j.ibiod.2010.09.007.
  • Thakur, M., H. Deshpande, and M. Bhate. 2017. Isolation and identification of lactic acid bacteria and their exploration in non-dairy probiotic drink. Inter. J. of Current Microbio. and Appl. Scien. 6 (4):1023–30. doi:10.20546/ijcmas.2017.604.127.
  • Uba, B., E. Okoye, C. Dokubo, T. Azuanichie, and O. Nworah. 2018. Biostimulatory effect of organic and inorganic nutrients on soil biological indicators in diesel contaminated soil. J. of Bio. and Biotech. Discovery 3 (6):121–35. doi:10.31248/JBBD2018.087.
  • Udgire, M., N. Shah, and M. Jadhav. 2015. Enrichment, isolation and identification of hydrocarbon degrading bacteria. Inter. J. of Current Microbio. and Appl. Scien. 4 (6):708–13.
  • Wang, X., Q. Wang, S. Wang, F. Li, and G. Guo. 2012. Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge. Bioresour. Technol. 111:308–15. doi:10.1016/j.biortech.2012.01.158.
  • Wang, X., J. Zheng, Z. Han, and H. Chen. 2019. Bioremediation of crude oil‐contaminated soil by hydrocarbon‐degrading microorganisms immobilized on humic acid‐modified biofuel ash. Journal of Chem. Tech. & Biotechnology 94 (6):1904–12. doi:10.1002/jctb.5969.
  • Wu, M., Dick, W. A Li, Wei Wang, X. Yang, Q. Wang, T. Xu, Limei Zhang, M. and Chen, L. 2016. Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Inter. Biodeter. & Biodegrad. 107:158–64. doi:10.1016/j.ibiod.2015.11.019.
  • Zhang, H., J. Tang, L. Wang, J. Liu, R. G. Gurav, and K. Sun. 2016. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar. J. Environ. Sci. 47:7–13. doi:10.1016/j.jes.2015.12.023.
  • Zhang, Q., W. Zhou, G. Liang, X. Wang, J. Sun, P. He, and L. Li. 2015. Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short-term experiment. PLoS. ONE. 10 (4):e0124096. doi:10.1371/journal.pone.0124096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.