107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on Amendment of Rapeseed Meal, Soybean Meal, and NPK Fertilizer as Biostimulants in Bioremediation of Diesel-Contaminated Soil by Autochthonous Microorganisms

&

References

  • Abu, G., and B. Chikere. 2006. Cell surface properties of hydrocarbon-utilizing bacterial isolates from Port Harcourt marine environment. Nigerian Journal of Microbiology 20:809–16.
  • Achuba, F. I., and P. N. Okoh. 2014. Effect of petroleum products on soil catalase and dehydrogenase activities. Open Journal of Soil Science 4 (12):399. doi:10.4236/ojss.2014.412040.
  • Achuba, F., and B. Peretiemo-Clarke. 2008. Effect of spent engine oil on soil catalase and dehydrogenase activities. International Agrophysics 22:1–4.
  • Acuña, A. J., O. H. Pucci, and G. N. Pucci. 2012. Effect of nitrogen deficiency in the biodegradation of aliphatic and aromatic hydrocarbons in Patagonian contaminated soil. International Journal of Research and Reviews in Applied Sciences 11:470–76.
  • Agarry, S. E., and O. O. Ogunleye. 2012. Box-Behnken design application to study enhanced bioremediation of soil artificially contaminated with spent engine oil using biostimulation strategy. International Journal of Energy Environmental Engineering 3 (1):1–14. doi:10.1186/2251-6832-3-31.
  • Agarry, S., C. Owabor, and R. Yusuf. 2012. Enhanced bioremediation of soil artificially contaminated with kerosene: Optimization of biostimulation agents through statistical experimental design. Journal of Petroleum & Environmental Biotechnology 3 (03):2–8. doi:10.4172/2157-7463.1000120.
  • Ajoku, G., and M. Oduola. 2013. Kinetic model of pH effect on bioremediation of crude petroleum contaminated soil. 1 Model development. American Journal of Chemical Engineering 1 (1):6–10. doi:10.11648/j.ajche.20130101.12.
  • Ak, B., S. Karadag, and E. Sakar. 2016. Pistachio production and industry in Turkey: Current status and future perspective, XVI GREMPA meeting of almonds and pistachios. CIHEAM 119:323–29.
  • Ali, N., N. Dashti, M. Khanafer, H. Al-Awadhi, and S. Radwan. 2020. Bioremediation of soils saturated with spilled crude oil. Scientific Reports 10 (1):1–9. doi:10.1038/s41598-019-57224-x.
  • Aly, M., S. Tork, S. Al-Garni, and R. Allam. 2013. Production and characterization of uricase from Streptomyces exfoliatus UR10 isolated from farm wastes. Turkish Journal of Biology 37:520–29. doi:10.3906/biy-1206-3.
  • Aly, M. M., S. Tork, S. M. Al-Garni, and L. Nawar. 2012. Production of lipase from genetically improved Streptomyces exfoliates LP10 isolated from oil-contaminated soil. African Journal of Microbiology Research 6 (6):1125–37. doi:10.5897/AJMR11.1123.
  • Anitha, A., and M. Rabeeth. 2010. Degradation of fungal cell walls of phytopathogenic fungi by lytic enzyme of Streptomyces griseus. African Journal of Plant Science 4:61–66.
  • ASTM, D. (2007): Standard test method for particle-size analysis of soils.
  • Atuanya, E., and I. Ibeh. 2004. Bioremediation of crude oil contaminated loamy-sand and clay soils. Nigerian Journal of Microbiology 18:6373–86.
  • Barabás, G., G. Vargha, I. Szabó, A. Penyige, J. Szöllösi, J. Matkó, S. Damjanovich, and T. Hirano. 2001. Hydrocarbon utilisation by Streptomyces soil bacteria, applied microbiology, 185–90. Springer.
  • Bastida, F., N. Jehmlich, K. Lima, B. Morris, H. Richnow, T. Hernández, M. Von Bergen, and C. García. 2016. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. Journal of Proteomics 135:162–69. doi:10.1016/j.jprot.2015.07.023.
  • Beers, R. F., and I. W. Sizer. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry 195 (1):133–40. doi:10.1016/S0021-9258(19)50881-X.
  • Casida, J. L., D. A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Science 98 (6):371–76. doi:10.1097/00010694-196412000-00004.
  • Chikere, B., and C. Chijioke-Osuji. 2006. Microbial diversity and physicochemical properties of a crude oil polluted soil. Nigerian Journal of Microbiology 20:1039–46.
  • Chikere, C., G. Okpokwasili, and B. Chikere. 2009. Bacterial diversity in a tropical crude oil-polluted soil undergoing bioremediation. African Journal of Biotechnology 8 (11):2535–2540.
  • Chorom, M., H. Sharifi, and H. Motamedi (2010): Bioremediation of a crude oil-polluted soil by application of fertilizers.
  • Cohen, M. F., H. Yamasaki, and M. Mazzola. 2004. Bioremediation of soils by plant–microbe systems. International Journal of Green Energy 1 (3):301–12. doi:10.1081/GE-200033610.
  • Del Carmen Cuevas-Díaz, M., Á. Martínez-Toledo, O. Guzmán-López, C. P. Torres-López, A. D. C. Ortega-Martínez, and L. J. Hermida-Mendoza. 2017. Catalase and phosphatase activities during hydrocarbon removal from oil-contaminated soil amended with agro-industrial by-products and macronutrients. Water, Air, & Soil Pollution 228 (4):159. doi:10.1007/s11270-017-3336-2.
  • Ejaz, M., B. Zhao, X. Wang, S. Bashir, F. U. Haider, Z. Aslam, M. I. Khan, M. Shabaan, M. Naveed, and A. Mustafa. 2021. Isolation and characterization of oil-degrading Enterobacter sp. from naturally hydrocarbon-contaminated soils and their potential use against the bioremediation of crude oil. Applied Sciences 11 (8):3504. doi:10.3390/app11083504.
  • Eziuzor, C., and G. Okpokwasili. 2009. Bioremediation of hydrocarbon contaminated mangrove soil in a bioreactor. Nigerian Journal of Microbiology 23:1777–91.
  • Gilani, G. S., K. A. Cockell, and E. Sepehr. 2005. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. Journal of AOAC International 88 (3):967–87. doi:10.1093/jaoac/88.3.967.
  • Hoang, S. A., B. Sarkar, B. Seshadri, D. Lamb, H. Wijesekara, M. Vithanage, C. Liyanage, P. A. Kolivabandara, J. Rinklebe, and S. S. Lam. 2021. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. Journal of Hazardous Materials 416:125702. doi:10.1016/j.jhazmat.2021.125702.
  • Huluka, G., and R. Miller. 2014. Particle size determination by hydrometer method. Southern Cooperative Series Bulletin 419:180–84.
  • Ijah, U., and S. Antai. 2003. Removal of Nigerian light crude oil in soil over a 12-month period. International Biodeterioration & Biodegradation 51 (2):93–99. doi:10.1016/S0964-8305(01)00131-7.
  • Jaremko, D., and D. Kalembasa. 2014. A comparison of methods for the determination of cation exchange capacity of soils/Porównanie method oznaczania pojemności wymiany kationów i sumy kationów wymiennych w glebach. Ecological Chemistry and Engineering 21:487.
  • Khajali, F., and B. Slominski. 2012. Factors that affect the nutritive value of canola meal for poultry. Pollution Science 91 (10):2564–75. doi:10.3382/ps.2012-02332.
  • Kim, I. S., and K. J. Lee. 1995. Physiological roles of leupeptin and extracellular proteases in mycelium development of Streptomyces exfoliatus SMF13. Microbiology (Reading, English) 141 (4):1017–25. doi:10.1099/13500872-141-4-1017.
  • Latifian, M., J. Liu, and B. Mattiasson. 2012. Struvite-based fertilizer and its physical and chemical properties. Environmental Technology 33 (24):2691–97. doi:10.1080/09593330.2012.676073.
  • Lee, H., D. W. Lee, S. L. Kwon, Y. M. Heo, S. Jang, B. -O. Kwon, J. S. Khim, G. -H. Kim, and J. -J. Kim. 2019. Importance of functional diversity in assessing the recovery of the microbial community after the Hebei Spirit oil spill in Korea. Environmental International 128:89–94. doi:10.1016/j.envint.2019.04.039.
  • Liu, P.W., T. C. Chang, L. -M. Whang, C. -H. Kao, P. -T. Pan, and S. -S. Cheng. 2011. Bioremediation of petroleum hydrocarbon contaminated soil: Effects of strategies and microbial community shift. International Biodeterioration & Biodegradation 65 (8):1119–27. doi:10.1016/j.ibiod.2011.09.002.
  • Lukić, B., D. Huguenot, A. Panico, M. Fabbricino, E. D. van Hullebusch, and G. Esposito. 2016. Importance of organic amendment characteristics on bioremediation of PAH-contaminated soil. Environmental Science Pollution Research 23 (15):15041–52. doi:10.1007/s11356-016-6635-z.
  • Małachowska-Jutsz, A., and K. Matyja. 2019. Discussion on methods of soil dehydrogenase determination. International Journal of Environmental Science and Technology 16 (12):7777–90. doi:10.1007/s13762-019-02375-7.
  • Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. Great Britain: Academic.
  • Ma, J., Y. Yang, X. Dai, Y. Chen, H. Deng, H. Zhou, S. Guo, and G. Yan. 2016. Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste. Chemosphere 150:17–23. doi:10.1016/j.chemosphere.2016.01.123.
  • Mazzola, M., D. M. Granatstein, D. C. Elfving, and K. Mullinix. 2001. Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content. Phytopathology® 91 (7):673–79. doi:10.1094/PHYTO.2001.91.7.673.
  • Moopam, R. 1999. Manual of oceanographic observations and pollutant analysis methods. ROPME Kuwait 1:122–33.
  • Mukome, F. N., M. C. Buelow, J. Shang, J. Peng, M. Rodriguez, D. M. Mackay, J. J. Pignatello, N. Sihota, T. P. Hoelen, and S. J. Parikh. 2020. Biochar amendment as a remediation strategy for surface soils impacted by crude oil. Environmental Pollution 265:115006. doi:10.1016/j.envpol.2020.115006.
  • Nwankwegu, A. S., C. O. Onwosi, F. Azi, P. Azumini, and C. G. Anaukwu. 2017. Use of rice husk as bulking agent in bioremediation of automobile gas oil impinged agricultural soil. Soil & Sediment Contam. : International Journal 26 (1):96–114. doi:10.1080/15320383.2017.1245711.
  • Nwankwegu, A. S., M. U. Orji, and C. O. Onwosi. 2016. Studies on organic and in-organic biostimulants in bioremediation of diesel-contaminated arable soil. Chemosphere 162:148–56. doi:10.1016/j.chemosphere.2016.07.074.
  • Obire, O., E. Anyanwu, and R. Okigbo. 2008. Saprophytic and crude oil degrading fungi from cow dung and poultry droppings as bioremediating agents. Journal of Agricultural Technology 4:81–89.
  • Ofoegbu, R. U., Y. O. Momoh, and I. L. Nwaogazie. 2015. Bioremediation of crude oil contaminated soil using organic and inorganic fertilizers. Journal of Petroleum & Environmental Biotechnology 6 (01):1. doi:10.4172/2157-7463.1000198.
  • Orji, F. A., A. A. Ibiene, and E. N. Dike. 2012. Laboratory scale bioremediation of petroleum hydrocarbon–polluted mangrove swamps in the Niger Delta using cow dung. Malaysian Journal of Microbiology 8:219–28.
  • Pete, A. J., B. Bharti, and M. G. Benton. 2021. Nano-enhanced bioremediation for oil spills: A review. ACS ES&T Engineering 1 (6):928–46. doi:10.1021/acsestengg.0c00217.
  • Polewczyk, A., O. Marchut-Mikołajczyk, P. Drożdżyński, J. Domański, and K. Śmigielski. 2020. Effects of ozonized rapeseed oil on bioremediation of diesel oil contaminated soil by Bacillus mycoides NS1020. Journal of bioremediation 24 (2–3):204–13. doi:10.1080/10889868.2020.1763250.
  • Polyak, Y. M., L. G. Bakina, M. V. Chugunova, N. V. Mayachkina, A. O. Gerasimov, and V. M. Bure. 2018. Effect of remediation strategies on biological activity of oil-contaminated soil-A field study. International Biodeterioration & Biodegradation 126:57–68. doi:10.1016/j.ibiod.2017.10.004.
  • Raboanatahiry, N., H. Li, L. Yu, and M. Li. 2021. Rapeseed (Brassica napus): Processing, utilization, and genetic improvement. Agronomy 11 (9):1776. doi:10.3390/agronomy11091776.
  • Ramadass, K., M. Megharaj, K. Venkateswarlu, and R. Naidu. 2015. Ecological implications of motor oil pollution: Earthworm survival and soil health. Soil Biology and Biochemistry 85:72–81. doi:10.1016/j.soilbio.2015.02.026.
  • Rathore, D. S., K. Malaviya, A. Dobariya, and S. P. Singh (2020): Optimization of the production of an amylase from a marine actinomycetes Nocardiopsis dassonvillei strain KaS11, Proceedings of the National Conference on Innovations in Biological Sciences (NCIBS), India.
  • Robichaud, K., C. Girard, D. Dagher, K. Stewart, M. Labrecque, M. Hijri, and M. Amyot. 2019. Local fungi, willow and municipal compost effectively remediate petroleum-contaminated soil in the Canadian North. Chemosphere 220:47–55. doi:10.1016/j.chemosphere.2018.12.108.
  • Roosta, H. R., and Z. Mohammadi. 2013. Improvement of some nut quality factors by manure, ammonium, and iron application in alkaline soil pistachio orchards. Journal of Plant Nutrition 36 (5):691–701. doi:10.1080/01904167.2012.748797.
  • Rothrock, C. S., and D. Gottlieb. 1984. Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Canadian Journal of Microbiology 30 (12):1440–47. doi:10.1139/m84-230.
  • Ruberto, L., S. C. Vazquez, and W. P. Mac Cormack. 2003. Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. International Biodeterioration & Biodegradation 52 (2):115–25. doi:10.1016/S0964-8305(03)00048-9.
  • Rutkowski, A. 1971. The feed value of rapeseed meal. Journal of the American Oil Chemists Society 48 (12):863–68. doi:10.1007/BF02609300.
  • Saari, E., P. Perämäki, and J. Jalonen. 2007. A comparative study of solvent extraction of total petroleum hydrocarbons in soil. Microchimica Acta 158 (3–4):261–68. doi:10.1007/s00604-006-0718-3.
  • Semboung Lang, F., C. Tarayre, J. Destain, F. Delvigne, P. Druart, M. Ongena, and P. Thonart. 2016. The effect of nutrients on the degradation of hydrocarbons in mangrove ecosystems by microorganisms. International Journal of Environmental Research 10:583–592.
  • Sharma, A. K., B. A. Kikani, and S. P. Singh. 2020. Biochemical, thermodynamic and structural characteristics of a biotechnologically compatible alkaline protease from a haloalkaliphilic, Nocardiopsis dassonvillei OK-18. International Journal of Biological Macromolecules 153:680–96. doi:10.1016/j.ijbiomac.2020.03.006.
  • Staninska-Pięta, J., J. Czarny, W. Juzwa, Ł. Wolko, P. Cyplik, and A. Piotrowska-Cyplik. 2022. Dose–response effect of nitrogen on microbial community during hydrocarbon biodegradation in simplified model system. Applied Sciences 12 (12):6012. doi:10.3390/app12126012.
  • Thalmann, A. 1968. Zur Methodik der Bestimmung der DehydrogenaseaktivitAt im Boden mittels triphenytetrazoliumchlorid (TTC). Landwirtsch Forsch 21:249–58.
  • Tokala, R. K., J. L. Strap, C. M. Jung, D. L. Crawford, M. H. Salove, L. A. Deobald, J. F. Bailey, and M. Morra. 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Applied and Environmental Microbiology 68 (5):2161–71. doi:10.1128/AEM.68.5.2161-2171.2002.
  • Utobo, E., and L. Tewari. 2015. Soil enzymes as bioindicators of soil ecosystem status. Applied Ecology and Environmental Research 13:147–69.
  • Varjani, S. J., and V. N. Upasani. 2017. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation 120:71–83. doi:10.1016/j.ibiod.2017.02.006.
  • Ventorino, V., A. Pascale, M. Fagnano, P. Adamo, V. Faraco, C. Rocco, N. Fiorentino, and O. Pepe. 2019. Soil tillage and compost amendment promote bioremediation and biofertility of polluted area. Journal of Cleaner Production 239:118087. doi:10.1016/j.jclepro.2019.118087.
  • Walkley, A., and I. A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37 (1):29–38. doi:10.1097/00010694-193401000-00003.
  • Walworth, J., A. Pond, I. Snape, J. Rayner, S. Ferguson, and P. Harvey. 2007. Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Regions Science and Technology 48 (2):84–91. doi:10.1016/j.coldregions.2006.07.001.
  • Wang, Q., J. Hou, J. Yuan, Y. Wu, W. Liu, Y. Luo, and P. Christie. 2020. Evaluation of fatty acid derivatives in the remediation of aged PAH-contaminated soil and microbial community and degradation gene response. Chemosphere 248:125983. doi:10.1016/j.chemosphere.2020.125983.
  • Wang, S. -Y., Y. -C. Kuo, A. Hong, Y. -M. Chang, and C. -M. Kao. 2016. Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system. Chemosphere 164:558–67. doi:10.1016/j.chemosphere.2016.08.128.
  • Wang, R., S. M. Shaarani, L. C. Godoy, M. Melikoglu, C. S. Vergara, A. Koutinas, and C. Webb. 2010. Bioconversion of rapeseed meal for the production of a generic microbial feedstock. Enzyme Microbial Technology 47 (3):77–83. doi:10.1016/j.enzmictec.2010.05.005.
  • Wieczorek, D., O. Marchut-Mikolajczyk, and T. Antczak. 2015. Changes in microbial dehydrogenase activity and pH during bioremediation of fuel contaminated soil. Journal of Biotechnology Computational Biology and Bionanotechnology 4:293–306. doi:10.5114/bta.2015.58377.
  • Wolińska, A., and Z. Stępniewska. 2012. Dehydrogenase activity in the soil environment. Dehydrogenases 10:183–210.
  • Xu, J., J. Du, L. Li, Q. Zhang, and Z. Chen. 2020. Fast-stimulating bioremediation of macro crude oil in soils using matching Fenton pre-oxidation. Chemosphere 252:126622. doi:10.1016/j.chemosphere.2020.126622.
  • Yang, Z., Z. Huang, and L. Cao. 2022. Biotransformation technology and high-value application of rapeseed meal: A review. Bioresources and Bioprocessing 9 (1):1–18. doi:10.1186/s40643-022-00586-4.
  • Zhang, X., X. Li, X. Chen, Y. Sun, L. Zhao, T. Han, T. Li, L. Weng, and Y. Li. 2021. A nitrogen supplement to regulate the degradation of petroleum hydrocarbons in soil microbial electrochemical remediation. Journal of Chemical Engineering 426:131202. doi:10.1016/j.cej.2021.131202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.