195
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical Simulation of Heat Transfer Characteristics of Petroleum Hydrocarbon-Contaminated Soil During Ex-Situ Indirect Thermal Desorption

, , , , &

References

  • Chen, M. H., D. Z. Cong, T. N. Fang, and M. Z. Qi. 2006. Principle of Chemical Industry. Beijing: Chemical Industry Press.
  • Ding, D., X. Song, C. L. Wei, and J. LaChance. 2019. A review on the sustainability of thermal treatment for contaminated soils. Environmental Pollution 253:449–63. doi:10.1016/j.envpol.2019.06.118.
  • Falciglia, P. P., P. Scandura, and F. G. A. Vagliasindi. 2018. Modelling and preliminary technical, energy and economic considerations for full-scale in situ remediation of low-dielectric hydrocarbon-polluted soils by microwave heating (MWH) technique. Journal of Soils & Sediments 18 (6):2350–60. doi:10.1007/s11368-017-1682-8.
  • Fiveland, W. A. 1984. Discrete ordinate solutions of the radiative heat transport equation for rectangular enclosures. Journal of Mass and Heat Transfer 106 (4):699–706. doi:10.1115/1.3246741.
  • Francesco, B., R. Marco, P. Stefano, and E. Giovanni. 2023. A critical review of the remediation of PAH-polluted marine sediments: Current knowledge and future perspectives. Resources, Environment and Sustainability. doi:10.1016/j.resenv.2022.100101.
  • Guo, J. J. 2019. Non-gray radiative property models for participating media and heat transfer characteristics in oxy-fuel combustion. PhD diss., Huazhong University of Science and Technology.
  • Han, Z. Y., W. T. Jiao, Y. Tian, J. Hu, and D. L. Han. 2020. Lab-scale removal of PAHs in contaminated soil using electrical resistance heating: Removal efficiency and alteration of soil properties. Chemosphere 239:124496. doi:10.1016/j.chemosphere.2019.124496.
  • Hu, H. Y., and Q. Wang. 2019. Improved spectral absorption-coefficient grouping strategies in radiation heat transfer calculations for combustion gases with pressure and temperature inhomogeneity. Numerical Heat Transfer, Part B: Fundamentals 75 (3):1–20. doi:10.1080/10407790.2019.1612663.
  • Kim, O. J., J. P. Gore, R. Viskanta, and X. Lei Zhu. 2003. Prediction of self-absorption in opposed flow diffusion and partially pre-mixed flames using a weighted sum of gray gases model (WSGGM)-based spectral model. Numerical Heat Transfer, Part A: Applications 44 (4):335–53. doi:10.1080/713838232.
  • Kuppusamy, S., T. Palanisami, M. Megharaj, K. Venkateswarlu, and R. Naidu. 2016. Ex-situ remediation technologies for environmental pollutants: A critical perspective. Reviews of Environmental Contamination and Toxicology 236:117–92.
  • Liang, D., Z. Z. He, J. K. Mao, L. Xu, and Y. Fu. 2020. Influence of scattering effect of soot on radiative transfer in high temperature gas-soot mixtures. Journal of Nanjing University of Aeronautics & Astronautics 52 (4):588–97.
  • Lu, Y., S. Lu, R. Horton, and T. Ren. 2014. An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density. Soil Science Society of America Journal 78 (6):1859–68. doi:10.2136/sssaj2014.05.0218.
  • McAlexander, B. L., F. J. Krembs, and M. Cardeñosa Mendoza. 2015. Treatability testing for weathered hydrocarbons in soils: Bioremediation, soil washing, chemical oxidation, and thermal desorption. Soil and Sediment Contamination: An International Journal 24 (8):882–97. doi:10.1080/15320383.2015.1064088.
  • O’Brien, P. L., T. M. DeSutter, F. X. M. Casey, E. Khan, and A. F. Wick. 2018. Thermal remediation alters soil properties – a review. Journal of Environmental Management 206:826–35. doi:10.1016/j.jenvman.2017.11.052.
  • Sayyed, M. I., F. Akman, V. Turan, and A. Araz. 2018. Evaluation of radiation absorption capacity of some soil samples. Radiochimica Acta 107 (1):83–93. doi:10.1515/ract-2018-2996.
  • Shen, Z. Z., Y. J. Chen, S. P. Li, Q. Gu, L. L. Guo, W. T. Jiao, P. Liu, L. J. Ji, and J. Li. 2019. Applications of ex-situ thermal desorption technology and equipment in contaminated site remediation projects in China. Chinese Journal of Environmental Engineering 13 (9):2060–73.
  • Tatàno, F., F. Felici, and F. Mangani. 2013. Lab-Scale treatability tests for the thermal desorption of hydrocarbon-contaminated soils. Soil and Sediment Contamination: An International Journal 22 (4):433–56. doi:10.1080/15320383.2013.721814.
  • Truelove, J. S. 1987. Discrete ordinate solutions of the radiative heat transport equation. Journal of Heat Transfer 109 (4):1048–51. doi:10.1115/1.3248182.
  • Ullu, M., and E. Bakırhan. 2018. Investigation of radiation absorption coefficients of lead-zinc mine waste rock mixed heavy concrete at 662–1460 keV energy range. Construction and Building Materials 173:17–27. doi:10.1016/j.conbuildmat.2018.03.175.
  • Vidonish, J. E., K. Zygourakis, C. A. Masiello, G. Sabadell, and P. J. J. Alvarez. 2016. Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation. Engineering 2 (4):426–37. doi:10.1016/J.ENG.2016.04.005.
  • Wang, B. 2021. Study on key influencing factors of indirect thermal desorption of petroleum hydrocarbon contaminated soils. Master diss., Zhejiang University.
  • Wang, Y. 2001. Design manual of continuous conveying machinery. Beijing: China Railway Publishing House.
  • Wang, F. L., L. Li, Y. Li, Z. H. Wang, L. X. Cai, Z. W. Bai, and R. Jia. 2022. Thermal desorption behavior of the fractions of petroleum hydrocarbons in soil. Petroleum Processing and Petrochemicals 53 (4):114–18.
  • Wang, B. Y., Y. Yu, Q. Z. Lin, and X. J. Xing. 2009. Numerical analysis and experimental study of NOx generation in flameless combustion. Journal of Engineering for Thermal Energy and Power 24 (6):787–91+821.
  • Wu, X. F., and W. D. Fan. 2021. Effect of gas radiation model on the numerical simulation of combustion and heat transfer in oxy-fuel combustion. Clean Coal Technology 27 (2):150–60.
  • Xie, Q. L., K. G. Mumford, B. H. Kueper, and C. Zhao. 2019. A numerical model for estimating the removal of volatile organic compounds in laboratory-scale treatability tests for thermal treatment of NAPL-impacted soils. Journal of Contaminant Hydrology 226:103526. 23 July 23. doi:10.1016/j.jconhyd.2019.103526.
  • Xu, X. Y., N. Hu, and L. W. Fan. 2022. Coupled water-vapor-heat transport simulation on in-situ thermal conduction heating remediation of soil. Journal of Zhejiang University (Engineering Science) 56 (1):144–51+160.
  • Xu, H. J., Y. Z. Li, L. J. Gao, and X. Zhang. 2020. Planned heating control strategy and thermodynamic modeling of a natural gas thermal desorption system for contaminated soil. Energies 13 (3):642. doi:10.3390/en13030642.
  • Yang, H. J. 2008. Study on the pyrolysis technology of oily sludge. Master diss., China University of Petroleum (East China).
  • Yang, Z., Q. Q. Jin, G. M. Yi, L. L. Liu, L. S. Liu, M. J. Liu, Y. P. Lu, and Y. Yue. 2019. Application of in-situ ectopic pile thermal desorption technology and equipment in the petroleum-contaminated soil remediation. Chinese Journal of Environmental Engineering 13 (9):2083–91.
  • Zhang, X. Y., K. Li, and A. G. Yao. 2022. Thermal desorption process simulation and effect prediction of oil-based cuttings. ACS Omega 7 (25):21675–83. doi:10.1021/acsomega.2c01597.
  • Zhao, C., Y. Dong, Y. P. Feng, Y. Z. Li, and Y. Dong. 2019. Thermal desorption for remediation of contaminated soil: A review. Chemosphere 221:841–55. doi:10.1016/j.chemosphere.2019.01.079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.