105
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of Modified Biochar on Soil Fluoride and Cadmium Speciation and Their Bioavailability to Tea Seedling (Camellia Sinensis L.)

, , , , , , & show all

References

  • Abbas, T., M. Rizwan, S. Ali, M. Adrees, A. Mahmood, M. Zia-Ur-Rehman, M. Ibrahim, M. Arshad, and M. F. Qayyum. 2018. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotox. Environ. Safe. 148:825–33. doi:10.1016/j.ecoenv.2017.11.063.
  • Adachi, K., T. Dote, E. Dote, G. Mitsui, and K. Kono. 2007. Strong acute toxicity, severe hepatic damage, renal injury and abnormal serum electrolytes after intravenous administration of cadmium fluoride in rats. Journal Of Occupational Health 49 (3):235–41. doi:10.1539/joh.49.235.
  • Agbna, G., A. Ali, A. Bashir, F. Eltoum, and M. Hassan. 2017. Influence of biochar amendment on soil water characteristics and crop growth enhancement under salinity stress. International Journal Of Engineering Works 4 (4):49–53. doi:10.5281/zenodo.555942.
  • Ajmal, Z., M. Kashif Irshad, A. Qadeer, M. Zia Ul Haq, R. Ullah, M. Aqeel Sarwar, T. Saeed, M. Abid, A. Hayat, A. Ali, et al. 2022. Novel magnetite nano-rods-modified biochar: A promising strategy to control lead mobility and transfer in soil-rice system. International Journal Of Environmental Science And Technology 20 (7):7543–58. doi:10.1007/s13762-022-04452-w.
  • Alkurdi, S. S. A., R. A. Al-Juboori, J. Bundschuh, L. Bowtell, and S. McKnight. 2020. Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal. Environ. Pollut. 262:114221. doi:https://doi.org/10.1016/j.envpol.2020.114221.
  • Anupam, and P. Khare. 2021. A comprehensive evaluation of inherent properties and applications of nano-biochar prepared from different methods and feedstocks. J. Clean. Prod. 320:128759. doi:10.1016/j.jclepro.2021.128759.
  • Bushra, B., and N. Remya. 2020. Biochar from pyrolysis of rice husk biomass—characteristics, modification and environmental application. Biomass Conversion And Biorefinery. doi:10.1007/s13399-020-01092-3.
  • Buss, W., J. G. Shepherd, K. V. Heal, and O. Mašek. 2018. Spatial and temporal microscale pH change at the soil-biochar interface. Geoderma 331:50–52. doi:10.1016/j.geoderma.2018.06.016.
  • Cai, Q., B. D. Turner, D. Sheng, and S. Sloan. 2015. The kinetics of fluoride sorption by zeolite: Effects of cadmium, barium and manganese. J. Contam. Hydrol. 177-178:136–47. doi:10.1016/j.jconhyd.2015.03.006.
  • Cai, H., X. Zhu, C. Peng, W. Xu, D. Li, Y. Wang, S. Fang, Y. Li, S. Hu, and X. Wan. 2016. Critical factors determining fluoride concentration in tea leaves produced from Anhui province, China. Ecotox. Environ. Safe. 131:14–21. doi:10.1016/j.ecoenv.2016.04.023.
  • Chai, M. W., F. C. Shi, R. L. Li, F. C. Liu, G. Y. Qiu, and L. M. Liu. 2013. Effect of NaCl on growth and Cd accumulation of halophyte Spartina alterniflora under CdCl2 stress. South African Journal Of Botany 85:63–69. doi:10.1016/j.sajb.2012.12.004.
  • Chen, S. Y., C. M. Lai, and G. R. Ke. 2011. Effects of rice husk biochar amendment on soil properties, carbon sequestration and greenhouse gas emissions. Taiwanese Journal Of Agricultural Chemistry And Food Science 49 (3):131–40. https://www.researchgate.net/publication/289298494.
  • Chen, Y. Z., S. L. Wang, Z. R. Nan, J. M. Ma, F. Zang, Y. P. Li, and Q. Zhang. 2017. Effect of fluoride and cadmium stress on the uptake and translocation of fluoride and cadmium and other mineral nutrition elements in radish in single element or co-taminated sierozem. Environ. Exp. Bot. 134:54–61. doi:10.1016/j.envexpbot.2016.11.002.
  • Chintala, R., J. Mollinedo, T. E. Schumacher, D. D. Malo, and J. L. Julson. 2014. Effect of biochar on chemical properties of acidic soil. Archives Of Agronomy And Soil Science 60 (3):393–404. doi:10.1080/03650340.2013.789870.
  • Ci, D., D. Jiang, T. Dai, Q. Jing, and W. Cao. 2011. Variation in cadmium tolerance and accumulation and their relationship in wheat recombinant inbred lines at seedling stage. Biol. Trace Elem. Res. 142 (3):807–18. doi:10.1007/s12011-010-8812-0.
  • Cooper, J., I. Greenberg, B. Ludwig, L. Hippich, D. Fischer, B. Glaser, and M. Kaiser. 2020. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agr. Ecosyst. Environ. 295:106882. doi:10.1016/j.agee.2020.106882.
  • Dahlin, A. S., J. Eriksson, C. D. Campbell, and I. Oborn. 2016. Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs? Sci. Total Environ. 554-555:349–57. doi:10.1016/j.scitotenv.2016.02.049.
  • Das, S., L. M. de Oliveira, E. da Silva, Y. G. Liu, and L. Q. Ma. 2017. Fluoride concentrations in traditional and herbal teas: Health risk assessment. Environ. Pollut. 231:779–84. doi:10.1016/j.envpol.2017.08.083.
  • Deng, S. W., J. Yu, Y. T. Wang, S. Q. Xie, Z. X. Rana, and W. Wei. 2019. Distribution, transfer, and time-dependent variation of Cd in soil-rice system: A case study in the Chengdu plain, Southwest China. Soil & Tillage Research 195:104367. doi:10.1016/j.still.2019.104367.
  • Derakhshan Nejad, Z., S. Rezania, M. C. Jung, A. A. Al-Ghamdi, A. Mustafa, and M. S. Elshikh. 2021. Effects of fine fractions of soil organic, semi-organic, and inorganic amendments on the mitigation of heavy metal(loid)s leaching and bioavailability in a post-mining area. Chemosphere 271:129538. doi:10.1016/j.chemosphere.2021.129538.
  • Ehsani, S. M., H. Niknahad-Gharmakher, J. Motamedi, M. Akbarlou, and E. Sheidai-Karkaj. 2021. The impact of lignite and wheat straw biochar application on structural traits of pot-grown Nitraria Schoberi L. and soil properties. J. Soil Sci. Plant Nutr. 21 (2):1191–200. doi:10.1007/s42729-021-00432-0.
  • Elliston, T., and I. W. Oliver. 2020. Ecotoxicological assessments of biochar additions to soil employing earthworm species Eisenia fetidaand and Lumbricus terrestris. Environ. Sci. Pollut. R. 27 (27):33410–18. doi:10.1007/s11356-019-04542-2.
  • Farooq, M. U., I. Ishaaq, C. Barutcular, M. Skalicky, R. Maqbool, A. Rastogi, S. Hussain, S. I. Allakhverdiev, and J. Zhu. 2021. Mitigation effects of selenium on accumulation of cadmium and morpho-physiological properties in rice varieties. Plant Physiol. Bioch. 170:1–13. doi:10.1016/j.plaphy.2021.11.035.
  • Fouladidorhani, M., M. Shayannejad, and E. Arthur. 2021. Evaluation of the potential of feedstock combinations and their biochars for soil amendment. Waste Manage. Res. 40 (7):932–39. doi:10.1177/0734242x211060611.
  • Fung, K. F., and M. H. Wong. 2002. Effects of soil pH on the uptake of Al, F and other elements by tea plants. J. Sci. Food Agric. 82 (1):146–52. doi:10.1002/jsfa.1007.
  • Gao, H., Z. Zhang, and X. Wan. 2012. Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants. Environ Geochem Health 34 (5):551–62. doi:10.1007/s10653-012-9459-x.
  • Garbuz, S., A. Mackay, M. Camps-Arbestain, B. DeVantier, and M. Minor. 2021. Biochar amendment improves soil physico-chemical properties and alters root biomass and the soil food web in grazed pastures. Agr. Ecosyst. Environ. 319:107517. doi:10.1016/j.agee.2021.107517.
  • Geilfus, C. M. 2018. Review on the significance of chlorine for crop yield and quality. Plant Science 270:114–22. doi:10.1016/j.plantsci.2018.02.014.
  • Ghassemi-Golezani, K., and S. Farhangi-Abriz. 2019. Biochar alleviates fluoride toxicity and oxidative stress in safflower (Carthamus tinctorius L.) seedlings. Chemosphere 223:406–15. doi:10.1016/j.chemosphere.2019.02.087.
  • Hamid, Y., L. Tang, B. Hussain, M. Usman, Q. Lin, M. S. Rashid, Z. L. He, and X. E. Yang. 2020. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. Sci. Total Environ. 707:136121. doi:10.1016/j.scitotenv.2019.136121.
  • Houben, D., L. Evrard, and P. Sonnet. 2013. Mobility, bioavailability and Ph-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92 (11):1450–57. doi:10.1016/j.chemosphere.2013.03.055.
  • Irshad, M. K., A. Noman, Y. Wang, Y. Yin, C. Chen, and J. Shang. 2022. Goethite modified biochar simultaneously mitigates the arsenic and cadmium accumulation in paddy rice (Oryza sativa) L. Environ. Res. 206:112238. doi:10.1016/j.envres.2021.112238.
  • Islam, M. S., A. Magid, Y. Chen, L. Weng, J. Ma, M. Y. Arafat, Z. H. Khan, and Y. Li. 2021. Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues. Sci. Total Environ. 785:147163. doi:10.1016/j.scitotenv.2021.147163.
  • Kannan, P., M. Paramasivan, S. Marimuthu, C. Swaminathan, and J. Bose. 2021. Applying both biochar and phosphobacteria enhances Vigna mungo L. growth and yield in acid soils by increasing soil pH, moisture content, microbial growth and P availability. Agr. Ecosyst. Environ. 308:107258. doi:10.1016/j.agee.2020.107258.
  • Lefevre, I., G. Marchal, P. Meerts, E. Correal, and S. Lutts. 2009. Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ. Exp. Bot. 65 (1):142–52. doi:10.1016/j.envexpbot.2008.07.005.
  • Li, W., H. Cheng, Y. Mu, A. Xu, B. Ma, F. Wang, and P. Xu. 2021. Occurrence, accumulation, and risk assessment of trace metals in tea (Camellia sinensis): A national reconnaissance. Sci. Total Environ. 792:148354. doi:10.1016/j.scitotenv.2021.148354.
  • Liu, R., B. Liu, L. Zhu, Z. He, J. Ju, H. Lan, and H. Liu. 2015. Effects of fluoride on the removal of cadmium and phosphate by aluminum coagulation. J. Environ. Sci. 32:118–25. doi:10.1016/j.jes.2014.10.024.
  • Liu, J., W. Lu, N. Zhang, D. Su, L. Zeer, H. Du, and K. Hu. 2021. Collaborative assessment and health risk of heavy metals in soils and tea leaves in the Southwest region of China. Int. J. Env. Res. Pub. He. 18 (19):10151. doi:10.3390/ijerph181910151.
  • Liu, G., J. Wang, E. Zhang, J. Hou, and X. Liu. 2016. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China. Environ. Sci. Pollut. R. 23 (9):8709–20. doi:10.1007/s11356-016-6114-6.
  • Liu, L., T. Yue, R. Liu, H. Lin, D. Wang, and B. Li. 2021. Efficient absorptive removal of Cd(II) in aqueous solution by biochar derived from sewage sludge and calcium sulfate. Bioresour. Technol. 336:125333. doi:10.1016/j.biortech.2021.125333.
  • Li, Y., S. Wang, Z. Nan, F. Zang, H. Sun, Q. Zhang, W. Huang, and L. Bao. 2019. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China. Sci. Total Environ. 663:307–14. doi:10.1016/j.scitotenv.2019.01.257.
  • Li, Y., S. Wang, D. Prete, S. Xue, Z. Nan, F. Zang, and Q. Zhang. 2017. Accumulation and interaction of fluoride and cadmium in the soil-wheat plant system from the wastewater irrigated soil of an oasis region in northwest China. Sci. Total Environ. 595:344–51. doi:10.1016/j.scitotenv.2017.03.288.
  • Li, Y., S. Wang, Q. Zhang, F. Zang, Z. Nan, H. Sun, W. Huang, and L. Bao. 2018. Accumulation, interaction and fractionation of fluoride and cadmium in sierozem and oilseed rape (Brassica napus L.) in northwest China. Plant Physiol. Bioch. 127:457–68. doi:10.1016/j.plaphy.2018.04.017.
  • Li, J., Z. M. Xie, and J. M. XU. 2006. Research progress in the relationship between soil environmental quality index of fluorine and human health in China. Journal Of Soil Science (In Chinese) 37 (1):194–200. doi:10.1016/S1872-2032(06)60052-8.
  • Li, Y. C., B. Xing, Y. Ding, X. H. Han, and S. R. Wang. 2020. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour. Technol. 312:123614. doi:10.1016/j.biortech.2020.123614.
  • Li, P., Z. Zhou, H B. Xu, and Y. Zhang. 2012. A novel hydrolysis method to synthesize chromium hydroxide nanoparticles and its catalytic effect in the thermal decomposition of ammonium perchlorate. Thermochim Acta 544:71–76 . doi:10.1016/j.tca.2012.06.021.
  • Lopez-Chuken, U. J., S. D. Young, and J. L. Guzman-Mar. 2010. Evaluating a ‘biotic ligand model’ applied to chloride-enhanced Cd uptake by Brassica juncea from nutrient solution at constant Cd2+ activity. Environ Technol 31 (3):307–18. doi:10.1080/09593330903470685.
  • Luo, M. K., H. Lin, Y. H. He, and Y. Zhang. 2020. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil. Sci. Total Environ. 717:137014. doi:10.1016/j.scitotenv.2020.137014.
  • Luo, J. L., D. J. Ni, C. L. Li, Y. R. Du, and Y. Q. Chen. 2021. The relationship between fluoride accumulation in tea plant and changes in leaf cell wall structure and composition under different fluoride conditions. Environ. Pollut. 270:116283. doi:10.1016/j.envpol.2020.116283.
  • Lu, T. P., X. J. Wang, Z. L. Du, and L. P. Wu. 2021. Impacts of continuous biochar application on major carbon fractions in soil profile of North China Plain’s cropland: In comparison with straw incorporation. Agr. Ecosyst. Environ. 315:107445. doi:10.1016/j.agee.2021.107445.
  • Maclachlan, S., and S. Zalik. 1963. Platid structure, Chlorophyll concentration, and free amino acid composition of a Chlorophyll mutant of barley. Can. J. Bot. 41 (7):1053–62. doi:10.1139/b63-088.
  • Ma, J., X. Ni, Q. Huang, D. Liu, and Z. Ye. 2021. Effect of bamboo biochar on reducing grain cadmium content in two contrasting wheat genotypes. Environ. Sci. Pollut. R. 28 (14):17405–16. doi:10.1007/s11356-020-12007-0.
  • Manivannan, V., P. Parhi, and J. W. Kramer. 2008. Metathesis synthesis and characterization of complex metal fluoride, KMF3 (M = Mg, Zn, Mn, Ni, Cu and Co) using mechanochemical activation. Bull. Mater. Sci. 31 (7):987–93. doi:10.1007/s12034-008-0155-5.
  • Mehdizadeh, L., S. Farsaraei, and M. Moghaddam. 2021. Biochar application modified growth and physiological parameters of Ocimum ciliatum L. and reduced human risk assessment under cadmium stress. J. Hazard. Mater. 409:124954. doi:10.1016/j.jhazmat.2020.124954.
  • Meilani, V., J. I. Lee, J. K. Kang, C. G. Lee, S. Jeong, and S. J. Park. 2021. Application of aluminum-modified food waste biochar as adsorbent of fluoride in aqueous solutions and optimization of production using response surface methodology. Microporous Mesoporous Material 312:110764. doi:10.1016/j.micromeso.2020.110764.
  • Meng, Q. F., S. Zhao, R. H. Geng, Y. Zhao, Y. Wang, F. Yu, J. Zhang, and X. F. Ma. 2021. Does biochar application enhance soil salinization risk in black soil of northeast China (a laboratory incubation experiment)? Archives Of Agronomy And Soil Science 67 (11):1566–77. doi:10.1080/03650340.2020.1800642.
  • Moirana, R. L., J. Mkunda, M. P. Perez, R. Machunda, and K. Mtei. 2021. The influence of fertilizers on the behavior of fluoride fractions in the alkaline soil. J Fluor Chem 250:109883. doi:10.1016/j.jfluchem.2021.109883.
  • Mou, S. H., S. Qin, Q. T. Hu, and X. Y. Duan. 2004. [Effect of fluorine, selenium and cadmium on anti-oxidase and microelements in rat’s body]. Wei Sheng Yan Jiu = Journal Of Hygiene Research 33 (2):211–13. doi:10.3969/j.issn.1000-8020.2004.02.025.
  • Nauman Mahamood, M., S. Zhu, A. Noman, A. Mahmood, S. Ashraf, M. Aqeel, M. Ibrahim, S. Ashraf, R. K. Liew, S. S. Lam, et al. 2023. An assessment of the efficacy of biochar and zero-valent iron nanoparticles in reducing lead toxicity in wheat (Triticum aestivum L.). Environ. Pollut. 319:120979. doi:10.1016/j.envpol.2022.120979.
  • Niu, H., K. Zhan, W. Xu, C. Peng, C. Hou, Y. Li, R. Hou, X. Wan, and H. Cai. 2020. Selenium treatment modulates fluoride distribution and mitigates fluoride stress in tea plant (Camellia sinensis (L.) O. Kuntze). (L.) O. Kuntze). Environmental Pollution 267:115603. doi:10.1016/j.envpol.2020.115603.
  • Novak, J. M., W. J. Busscher, D. L. Laird, M. Ahmedna, D. W. Watts, and M. Niandou. 2009. Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Sci 174 (2):105–12. doi:10.1097/SS.0b013e3181981d9a.
  • Olszowski, T., M. Sikora, and D. Chlubek. 2016. Combined toxicity of fluoride and cadmium. Fluoride 49 (3):194–203. https://www.researchgate.net/publication/307518911.
  • Onyatta, J. O., and P. M. Huang. 2006. Distribution of applied cadmium in different size fractions of soils after incubation. Biol. Fert. Soils 42 (5):432–36. doi:10.1007/s00374-006-0087-4.
  • Peng, C. Y., X. F. Xu, Y. F. Ren, H. L. Niu, Y. Q. Yang, R. Y. Hou, X. C. Wan, and H. M. Cai. 2021. Fluoride absorption, transportation and tolerance mechanism in Camellia sinensis, and its bioavailability and health risk assessment: A systematic review. J. Sci. Food Agric. 101 (2):379–87. doi:10.1002/jsfa.10640.
  • Rady, M. M. 2011. Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci. Hortic. 129 (2):232–37. doi:10.1016/j.scienta.2011.03.035.
  • Rizzu, M., A. Tanda, C. Cappai, P. P. Roggero, and G. Seddaiu. 2021. Impacts of soil and water fluoride contamination on the safety and productivity of food and feed crops: A systematic review. Sci. Total Environ. 787:147650. doi:10.1016/j.scitotenv.2021.147650.
  • Sadhu, M., P. Bhattacharya, M. Vithanage, and P. P. Sudhakar. 2022. Adsorptive removal of fluoride using biochar - a potential application in drinking water treatment. Sep. Purif. Technol. 278:119106. doi:10.1016/j.seppur.2021.119106.
  • San Le, V., L. Herrmann, L. Hudek, N. Thi Binh, L. Brau, and D. Lesueur. 2021. How application of agricultural waste can enhance soil health in soils acidified by tea cultivation: A review. Environ Chem Lett 20 (1):813–39. doi:10.1007/s10311-021-01313-9.
  • SeyyediBidgoli, N. S., G. R. Mostafaii, H. Akbari, M. Mohammadzadeh, M. H. Arani, and M. B. Miranzadeh. 2020. Determination of the concentration of heavy metals in infused teas and their assessment of potential health risk in Kashan, Iran. Int J Environ Anal Chem 102 (19):7673–83. doi:10.1080/03067319.2020.1836174.
  • Sha, Q., H. D. Xie, W. Liu, D. W. Yang, Y. Y. He, C. Yang, N. Wang, and C. M. Ge. 2021. Removal of fluoride using platanus acerifoli leaves biochar – an efficient and low-cost application in wastewater treatment. Environ Technol 44 (1):93–107. doi:10.1080/09593330.2021.1964002.
  • Shi, R. Y., Z. N. Hong, J. Y. Li, J. Jiang, M. A. Kamran, R. K. Xu, and W. Qian. 2018. Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: A mechanism study. J. Environ. Manage. 210:171–79. doi:10.1016/j.jenvman.2018.01.028.
  • Shi, Y. Z., J. Y. Ruan, L. F. Ma, W. Y. Han, and F. Wang. 2008. Accumulation and distribution of arsenic and cadmium by tea plants. The Journal Of Zhejiang University Science B 9 (3):265–70. doi:10.1631/jzus.B0710631.
  • Shu, W. S., Z. Q. Zhang, C. Y. Lan, and M. H. Wong. 2003. Fluoride and aluminium concentrations of tea plants and tea products from Sichuan Province, PR China. Chemosphere 52 (9):1475–82. doi:10.1016/s0045-6535(03)00485-5.
  • Singh, A., and A. Roychoudhury. 2021. Salicylic acid–mediated alleviation of fluoride toxicity in rice by restricting fluoride bioaccumulation and strengthening the osmolyte, antioxidant and glyoxalase systems. Environ. Sci. Pollut. R. 30 (10):25024–36. doi:10.1007/s11356-021-14624-9.
  • Stevens, D. P., M. J. Mclaughlin, and A. M. Alston. 1997. Phytotoxicity of aluminium-fluoride complexes and their uptake from solution culture by Avena sativa and Lycopersicon esculentum. Plant Soil 192 (1):81–93. doi:10.1023/A:1004224526067.
  • Sungur, A., M. Soylak, and H. Ozcan. 2014. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: Relationship between soil properties and heavy metals availability. Chemical Speciation And Bioavailability 26 (4):219–30. doi:10.3184/095422914X14147781158674.
  • Tang, B., H. Xu, F. Song, H. Ge, L. Chen, S. Yue, and W. Yang. 2022. Effect of biochar on immobilization remediation of Cd rectangle contaminated soil and environmental quality. Environ. Res. 204 (Pt A):111840. doi:10.1016/j.envres.2021.111840.
  • Tao, C. J., Y. X. Song, Z. Chen, W. F. Zhao, J. F. Ji, N. P. Shen, G. A. Ayoko, and R. L. Frost. 2021. Geological load and health risk of heavy metals uptake by tea from soil: What are the significant influencing factors? Catena 204:105419. doi:10.1016/j.catena.2021.105419.
  • Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51 (7):844–51. doi:10.1021/ac50043a017.
  • Wallace, A. R., C. M. Su, Y. K. Choi, E. Kan, and W. J. Sun. 2020. Removal of fluoride from water using a calcium-modified dairy manure–derived biochar. J. Environ. Eng. 146 (12):1–10. doi:10.1061/(asce)ee.1943-7870.0001812.
  • Wang, L. W., N. S. Bolan, D. C. W. Tsang, and D. Y. Hou. 2020. Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. Sci. Total Environ. 720:137584. doi:10.1016/j.scitotenv.2020.137584.
  • Wang, J., N. Chen, C. Feng, and M. Li. 2018. Performance and mechanism of fluoride adsorption from groundwater by lanthanum-modified pomelo peel biochar. Environ. Sci. Pollut. R. 25 (16):15326–35. doi:10.1007/s11356-018-1727-6.
  • Wang, Y. Y., H. Y. Ji, H. H. Lyu, Y. X. Liu, L. L. He, L. C. You, C. H. Zhou, and S. M. Yang. 2019. Simultaneous alleviation of Sb and Cd availability in contaminated soil and accumulation in Lolium multiflorum Lam. After amendment with Fe-Mn-Modified biochar. J. Clean. Prod. 231:556–64. doi:10.1016/j.jclepro.2019.04.407.
  • Wang, M., X. Li, W. Y. He, J. X. Li, Y. Y. Zhu, Y. L. Liao, J. Y. Yang, and X. E. Yang. 2019. Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China. Environ. Pollut. 249:423–33. doi:10.1016/j.envpol.2019.03.044.
  • Wang, S., B. Li, H. H. Zhu, J. L. Shen, Q. H. Zhu, D. Y. Huang, C. Xu, Q. Zhang, and Z. B. Fang. 2021. Long-term effects of biochar on trace metals accumulation in rice grain: A 7-year field experiment. Agr. Ecosyst. Environ. 315:107446. doi:10.1016/j.agee.2021.107446.
  • Wang, S. X., R. Shan, Y. Z. Wang, L. L. Lu, and H. R. Yuan. 2019. Synthesis of calcium materials in biochar matrix as a highly stable catalyst for biodiesel production. Renew. Energ. 130:41–49. doi:10.1016/j.renene.2018.06.047.
  • Wang, J. L., and S. Z. Wang. 2019. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 227:1002–22. doi:10.1016/j.jclepro.2019.04.282.
  • Wang, M., L. Zhang, Y. Liu, D. Chen, L. Liu, C. Li, K. J. Kang, L. Wang, Z. He, and X. Yang. 2021. Spatial variation and fractionation of fluoride in tobacco-planted soils and leaf fluoride concentration in tobacco in Bijie City, Southwest China. Environ. Sci. Pollut. R. 28 (20):26112–23. doi:10.1007/s11356-020-11973-9.
  • Wang, M. M., Y. Zhu, L. R. Cheng, B. Andserson, X. H. Zhao, D. Y. Wang, and A. Z. Ding. 2018. Review on utilization of biochar for metal-contaminated soil and sediment remediation. J. Environ. Sci. 63:156–73. doi:10.1016/j.jes.2017.08.004.
  • Wei, L., Y. F. Huang, L. X. Huang, Q. Huang, Y. L. Li, X. Li, S. H. Yang, C. P. Liu, and Z. Z. Liu. 2021. Combined biochar and soda residues increases maize yields and decreases grain Cd/Pb in a highly Cd/Pb-polluted acid Udults soil. Agr. Ecosyst. Environ. 306:107258. doi:10.1016/j.agee.2020.107198.
  • Wellburn, A. R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144 (3):307–13. doi:10.1016/S0176-1617(11)81192-2.
  • Xiao, L., G. Yuan, L. Feng, D. Bi, and J. Wei. 2020. Soil properties and the growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) in response to reed (phragmites communis) biochar use in a salt-affected soil in the Yellow River Delta. Agr. Ecosyst. Environ. 303:107124. doi:10.1016/j.agee.2020.107124.
  • Xia, D., F. Tan, C. P. Zhang, X. L. Jiang, Z. Chen, H. Li, Y. M. Zheng, Q. B. Li, and Y. P. Wang. 2016. ZnCl2-activated biochar from biogas residue facilitates aqueous As(III) removal. Appl. Surf. Sci. 377:361–69. doi:10.1016/j.apsusc.2016.03.109.
  • Xu, Z. B., X. Y. Xu, D. C. W. Tsang, and X. D. Cao. 2018. Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils. Environ. Pollut. 242:1362–70. doi:10.1016/j.envpol.2018.08.012.
  • Yadav, M., N. Kumari, and V. Sharma. 2018. Phytoremediation efficiency of Brassica juncea cultivars at vegetative and reproductive growth stages under individual and combined treatment of fluoride and aluminium. Int. J. Phytoremediat. 20 (9):922–29. doi:10.1080/15226514.2018.1448361.
  • Yaghoubian, Y., S. A. Siadat, M. R. Moradi Telavat, and H. Pirdashti. 2016. Quantify the response of purslane plant growth, photosynthesis pigments and photosystem II photochemistry to cadmium concentration gradients in the soil. Russian Journal Of Plant Physiology+.+ 63 (1):77–84. doi:10.1134/s1021443716010180.
  • Yang, H. L., S. J. Ye, Z. T. Zeng, G. M. Zeng, X. F. Tan, R. Xiao, J. J. Wang, B. Song, L. Du, M. Qin, et al. 2020. Utilization of biochar for resource recovery from water: A review. The Chemical Engineering Journal 397:125502. doi:10.1016/j.cej.2020.125502.
  • Yin, J. L., Z. C. Zheng, T. X. Li, X. Z. Zhang, S. Q. He, Y. D. Wang, H. Y. Yu, and T. Liu. 2016. Effect of tea plantation age on the distribution of fluoride and its fractions within soil aggregates in the hilly region of Western Sichuan, China. Journal Of Soils & Sediments 16 (8):2128–37. doi:10.1007/s11368-016-1409-2.
  • Yi, X. Y., S. Qiao, L. F. Ma, J. Wang, and J. Y. Ruan. 2017. Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.). Environ Geochem Health 39 (5):1005–16. doi:10.1007/s10653-016-9868-3.
  • Yu, F., Y. Zhou, K. Cao, W. Gao, B. Gao, L. Sun, S. Liu, L. Wang, and Y. Ding. 2018. Phytotoxicity of ionic liquids with different structures on wheat seedlings and evaluation of their toxicity attenuation at the presence of modified biochar by adsorption effect. Chemosphere 196:331–38. doi:10.1016/j.chemosphere.2017.12.148.
  • Yu, X., H. Zhou, X. Ye, and H. Wang. 2021. From hazardous agriculture waste to hazardous metal scavenger: Tobacco stalk biochar-mediated sequestration of Cd leads to enhanced tobacco productivity. J. Hazard. Mater. 413:125303. doi:10.1016/j.jhazmat.2021.125303.
  • Zarcinas, B. A., B. Cartwright, and L. R. Spouncer. 1987. Nitric-acid digestion and multielement analysis of plant-material by inductively coupled plasma spectrometry. Commun. Soil Sci. Plan. 18 (1):131–46. doi:10.1080/00103628709367806.
  • Zhang, C., Z. Li, M. Gu, C. Deng, M. Liu, and L. Li. 2010. Spatial and vertical distribution and pollution assessment of soil fluorine in a lead-zinc mining area in the Karst region of Guangxi, China. Plant Soil Environ. 56 (6):282–87. doi:10.17221/10/2010-PSE.
  • Zhang, J. Q., C. B. Li, G. T. Li, Y. He, J. X. Yang, and J. G. Zhang. 2021. Effects of biochar on heavy metal bioavailability and uptake by tobacco (Nicotiana tabacum) in two soils. Agr. Ecosyst. Environ. 317:107453. doi:10.1016/j.agee.2021.107453.
  • Zhang, X. Q., Y. L. Qi, Z. H. Chen, N. N. Song, X. Li, D. J. Ren, and S. Q. Zhang. 2021. Evaluation of fluoride and cadmium adsorption modification of corn stalk by aluminum trichloride. Appl. Surf. Sci. 543:148727. doi:10.1016/j.apsusc.2020.148727.
  • Zhang, Y. F., J. M. Wang, and Y. Feng. 2021. The effects of biochar addition on soil physicochemical properties: A review. Catena 202:105284. doi:10.1016/j.catena.2021.105284.
  • Zhang, X. Q., H. X. Wu, Y. B. Ma, Y. Meng, D. J. Ren, and S. Q. Zhang. 2020. Intrinsic soil property effects on Cd phytotoxicity to Ligustrum japonicum ‘Howardii’ expressed as different fractions of Cd in forest soils. Ecotox. Environ. Safe. 206:110949. doi:10.1016/j.ecoenv.2020.110949.
  • Zhang, J., R. Yang, Y. C. Li, Y. Peng, X. Wen, and X. Ni. 2020. Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations. Ecotox. Environ. Safe. 195:110475. doi:10.1016/j.ecoenv.2020.110475.
  • Zhang, R., H. Zhang, Q. Chen, J. Luo, Z. Chai, and J. Shen. 2017. Composition, distribution and risk of total fluorine, extractable organofluorine and perfluorinated compounds in Chinese teas. Food Chem. 219:496–502. doi:10.1016/j.foodchem.2016.09.136.
  • Zhang, J. C., Z. M. Zhang, and X. F. Huang. 2021. Spatial heterogeneity of pH and heavy metal Cd in the soils of tea gardens in the plateau mountain regions, PR China. Environ. Monit. Assess. 193 (10):646–58. doi:10.1007/s10661-021-09431-1.
  • Zhang, M. Y., L. Zhang, M. Riaz, H. Xia, and C. C. Jiang. 2021. Biochar amendment improved fruit quality and soil properties and microbial communities at different depths in citrus production. J. Clean. Prod. 292:126062. doi:10.1016/j.jclepro.2021.126062.
  • Zhang, M. K., C. Zhou, and C. Y. Huang. 2006. Relationship between extractable metals in acid soils and metals taken up by tea plants. Commun. Soil Sci. Plan. 37 (3–4):347–61. doi:10.1080/00103620500440095.
  • Zhou, N., X. X. Guo, C. Q. Ye, L. Yan, W. S. Gu, X. R. Wu, Q. W. Zhou, Y. H. Yang, X. P. Wang, and Q. W. Cheng. 2021. Enhanced fluoride removal from drinking water in wide pH range using La/Fe/Al oxides loaded rice straw biochar. Water Supply 22 (1):779–94. doi:10.2166/ws.2021.232.
  • Zhu, Q. D., Y. Y. Li, S. Gao, and C. J. Shan. 2021. Praseodymium enhanced the tolerance of maize seedlings subjected to cadmium stress by up-regulating the enzymes in the regeneration and biosynthetic pathways of ascorbate and glutathione. Plant, Soil And Environment 67 (11):633–42. doi:10.17221/217/2021-pse.
  • Zong, Y., Q. Xiao, and S. Lu. 2021. Biochar derived from cadmium-contaminated rice straw at various pyrolysis temperatures: Cadmium immobilization mechanisms and environmental implication. Bioresour. Technol. 321:124459. doi:10.1016/j.biortech.2020.124459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.