125
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Study of the interaction mechanism of oppositely propagating cracks by dynamic photoelasticity and numerical simulation

, , , , &
Pages 2307-2320 | Received 10 Oct 2022, Accepted 01 Dec 2022, Published online: 28 Dec 2022

References

  • S. B. Tang, The effect of T-stress on the fracture of brittle rock under compression, Int. J. Rock Mech. Min. Sci., vol. 79, pp. 86–98, 2015. DOI: 10.1016/j.ijrmms.2015.06.009.
  • J. Akbardoost, and M. R. Ayatollahi, Experimental analysis of mixed mode crack propagation in brittle rocks: the effect of non-singular terms, Eng. Fract. Mech., vol. 129, pp. 77–89, 2014. DOI: 10.1016/j.engfracmech.2014.05.016.
  • L. Jian-Po, L. Yuan-Hui, X. Shi-da, X. Shuai, and J. Chang-Yu, Cracking mechanisms in granite rocks subjected to uniaxial compression by moment tensor analysis of acoustic emission, Theor. Appl. Fract. Mech., vol. 75, pp. 151–159, 2015. DOI: 10.1016/j.tafmec.2014.12.006.
  • L. Chi, Z. Zhang, A. Aalberg, J. Yang, and C. C. Li, Fracture processes in granite blocks under blast loading, Rock Mech. Rock. Eng., vol. 52, no. 3, pp. 853–868, 2019. DOI: 10.1007/s00603-018-1620-0.
  • R. Liu, Z. Zhu, M. Li, B. Liu, and D. Wan, Study on dynamic fracture behavior of mode I crack under blasting loads, Soil Dynam. Earthquake Eng., vol. 117, pp. 47–57, 2019. DOI: 10.1016/j.soildyn.2018.11.009.
  • C. X. Ding, R. S. Yang, C. D. Zheng, L. Y. Yang, S. L. He, and C. Feng, Numerical analysis of deep hole multi-stage cut blasting of vertical shaft using a continuum-based discrete element method[J], Arab J Geosci., vol. 14, no. 12, pp. 1086, 2021. DOI: 10.1007/s12517-021-07425-4.
  • W. Hao, X. Yao, Y. Ma, and Y. Yuan, Experimental study on interaction between matrix crack and fiber bundles using optical caustic method, Eng. Fract. Mech., vol. 134, pp. 354–367, 2015. DOI: 10.1016/j.engfracmech.2014.12.004.
  • K. Gong and Z. Li, Caustics method in dynamic facture problem of orthotropic materials, Opt. Lasers Eng., vol. 46, no. 8, pp. 614–619, 2008. DOI: 10.1016/j.optlaseng.2008.03.019.
  • R. S. Yang, C. X. Ding, L. Y. Yang, P. Xu, and C. Chen, Hole defects affect the dynamic fracture behavior of nearby running cracks, Shock Vib., vol. 2018, pp. 1–8, 2018. DOI: 10.1155/2018/5894356.
  • R. S. Yang, P. Xu, Z. W. Yue, and C. Chen, Dynamic fracture analysis of crack-defect interaction for mode I running crack using digital dynamic caustics method, Eng. Fract. Mech., vol. 161, pp. 63–75, 2016. DOI: 10.1016/j.engfracmech.2016.04.042.
  • R. S. Yang, C. X. Ding, Y. L. Li, L. Y. Yang, and Y. Zhao, Crack propagation behavior in slit charge blasting under high static stress conditions, Int. J. Rock Mech. Min. Sci., vol. 119, pp. 117–123, 2019. DOI: 10.1016/j.ijrmms.2019.05.002.
  • D. Chenxi, Y. Renshu, C. Cheng, M. Xinmin, K. Yiqiang, and Z. Yong, Experimental study of the interaction of directional crack and open joint in slit charge blasting, Chin. J. Eng., vol. 43, no. 7, pp. 894–902, 2021.
  • P. Baud and T. Reuschlé, A theoretical approach to the propagation of interacting cracks, Geophys. J. Int., vol. 130, no. 2, pp. 460–468, 1997. DOI: 10.1111/j.1365-246X.1997.tb05661.x.
  • M. É. Schwaab, T. Biben, S. Santucci, A. Gravouil, and L. Vanel, Interacting cracks obey a multiscale attractive to repulsive transition, Phys. Rev. Lett., vol. 120, no. 25, pp. 255501, 2018. DOI: 10.1103/PhysRevLett.120.255501.
  • Q. Chengzhi, X. Chen, L. Xiaozhao, and Q. Xiaolei, Effect of crack interaction on dynamic behavior of rock under impact, Sci. Sin.-Phys. Mech. Astron., vol. 50, no. 2, pp. 024612, 2020. DOI: 10.1360/SSPMA-2019-0189.
  • M. J. Dalbe, J. Koivisto, L. Vanel, A. Miksic, O. Ramos, M. Alava, and S. Santucci, Repulsion and attraction between a pair of cracks in a plastic sheet, Phys. Rev. Lett., vol. 114, no. 20, pp. 205501, 2015. DOI: 10.1103/PhysRevLett.114.205501.
  • J. Koivisto, M. J. Dalbe, M. J. Alava, S. Santucci, Path (un) predictability of two interacting cracks in polycarbonate sheets using digital image correlation, Sci. Rep., vol. 6, pp. 32278, 2016. DOI: 10.1038/srep32278.
  • Y. Renshu, D. Chenxi, Y. Liyun, Z. Yongxin, and L. Weiyu, Experimental study on interaction effect of dynamic cracks induced by blast, Blasting, vol. 33, no. 2, pp. 1–5, 2016.
  • J. Changbao, L. Xiaodong, W. Wensong, W. Wenhui, and D. Minke, Three-dimensional visualization of the evolution of pores and fractures in reservoir rocks under triaxial stress, Powder Technol., vol. 378, pp. 585–592, 2021. DOI: 10.1016/j.powtec.2020.10.013.
  • M. Wu, W. Wang, D. Zhang, B. Deng, S. Liu, J. Lu, Y. Luo, and W. Zhao, The pixel crack reconstruction method: from fracture image imageto crack geological model for fracture evolution simulation, Construct. Build. Mater., vol. 273, pp. 121733, 2021. DOI: 10.1016/j.conbuildmat.2020.121733.
  • C. Chen, R. Yang, P. Xu, and C. Ding, Experimental study on the interaction between oblique incident blast stress wave and static crack by dynamic photoelasticity, Optics Laser. Eng., vol. 148, pp. 106764, 2022. DOI: 10.1016/j.optlaseng.2021.106764.
  • Li Shiyu, He Taiming, and Yin Xiangchu, Introduction of Rock Fracture Mechanics, Press of University of Science and Technology of China, Hefei, China, 2010.
  • J. W. Dally and R. J. Sanford, Classification of stress-intensity factors from isochromatic-fringe patterns, Exp. Mech., vol. 18, no. 12, pp. 441–448, 1978. DOI: 10.1007/BF02324279.
  • M. Nikolic, X. N. Do, A. Ibrahimbegovic, and Z. Nikolic, Crack propagation in dynamics by embedded strong discontinuity approach: enhanced solid versus discrete lattice model, Comput. Methods Appl. Mech. Eng., vol. 340, pp. 480–499, 2018. DOI: 10.1016/j.cma.2018.06.012.
  • J. Čarija, M. Nikolić, A. Ibrahimbegovic, and Ž. Nikolić, Discrete softening-damage model for fracture process representation with embedded strong discontinuities, Eng. Fract. Mech., vol. 236, pp. 107211, 2020. DOI: 10.1016/j.engfracmech.2020.107211.
  • F. Armero and C. Linder, Numerical simulation of dynamic fracture using finite elements with embedded discontinuities, Int. J. Fract., vol. 160, no. 2, pp. 119–141, 2009. DOI: 10.1007/s10704-009-9413-9.
  • T. Belytschko, H. Chen, J. X. Xu, and G. Zi, Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Int. J. Numer. Meth. Eng., vol. 58, no. 12, pp. 1873–1905, 2003. DOI: 10.1002/nme.941.
  • J. H. Song and T. Belytschko, Cracking node method for dynamic fracture with finite elements, Int. J. Numer. Meth. Eng., vol. 77, no. 3, pp. 360–385, 2009. DOI: 10.1002/nme.2415.
  • J. Rethor, A. Gravouil, and A. Combescure, An energy-conserving scheme for dynamic crack growth using the eXtended finite element method, Int. J. Numer. Meth. Eng., vol. 63, no. 5, pp. 631–659, 2005. DOI: 10.1002/nme.1283.
  • M. J. Borden, C. V. Verhoosel, M. A. Scott, T. J. R. Hughes, and C. M. A. Landis, phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng., vol. 217–220, pp. 77–95, 2012. DOI: 10.1016/j.cma.2012.01.008.
  • X. Peng, Y. Renshu, G. Yang, C. Cheng, Y. Yang, and Z. Jinjing, Investigation of the interaction mechanism of two dynamic propagating cracks under blast loading, Eng. Fract. Mech., vol. 259, pp. 108112, 2022. DOI: 10.1016/j.engfracmech.2021.108112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.