305
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Multiscale fatigue damage model for CFRP laminates considering the effect of progressive interface debonding

, , , & ORCID Icon
Pages 2321-2333 | Received 24 Nov 2022, Accepted 01 Dec 2022, Published online: 30 Dec 2022

References

  • I. Kaleel, E. Carrera, and M. Petrolo, Progressive delamination of laminated composites via 1D models, Compos. Struct., vol. 235, p. 111799, 2020. DOI: 10.1016/j.compstruct.2019.111799.
  • I. Kaleel, M. Petrolo, E. Carrera, and A.M. Waas, Computationally efficient concurrent multiscale framework for the nonlinear analysis of composite structures, AIAA J., vol. 57, no. 9, pp. 4029–4041, 2019. DOI: 10.2514/1.J057881.
  • M.H. Nagaraj, I. Kaleel, E. Carrera, and M. Petrolo, Elastoplastic micromechanical analysis of fiber-reinforced composites with defects, Aerotec. Missili Spaz., vol. 101, no. 1, pp. 53–59, 2022. DOI: 10.1007/s42496-021-00103-4.
  • N. Tai, C. Ma, and S. Wu, Fatigue behaviour of carbon fibre/PEEK laminate composites, Composites, vol. 26, no. 8, pp. 551–559, 1995. DOI: 10.1016/0010-4361(95)92620-R.
  • E. Gamstedt and R. Talreja, Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics, J. Mater. Sci., vol. 34, no. 11, pp. 2535–2546, 1999. DOI: 10.1023/A:1004684228765.
  • R. Talreja, Fatigue of composite materials: damage mechanisms and fatigue-life diagrams, Proc. R. Soc. Lond. A: Math. Phys. Sci. 378, no. 1775. p. 461–475, 1981.
  • N. Azinan, A.H. Kadarman, and J.S.S. Sidhu, An overview of fatigue models for composite laminate materials, Mech. Adv. Mater. Struct., vol. 29, no. 25, pp. 4389–4411, 2022. DOI: 10.1080/15376494.2021.1929591.
  • M.L.P. Tonatto, J.R. Tarpani, and S.C. Amico, Short-beam shear fatigue behavior of round curved pultruded composite, Mech. Adv. Mater. Struct., vol. 29, no. 26, p. 5579–5587. 2022. DOI: 10.1080/15376494.2021.1959968.
  • C. Ganesan and P.S. Joanna, Modeling the residual strength and fatigue life of carbon fiber composites under constant amplitude loading, Mech. Adv. Mater. Struct., vol. 27, no. 21, pp. 1840–1848, 2020. DOI: 10.1080/15376494.2018.1526353.
  • J.C. Marin, J. Justo, F. París, and J. Cañas, The effect of frequency on tension-tension fatigue behavior of unidirectional and woven fabric graphite-epoxy composites, Mech. Adv. Mater. Struct., vol. 26, no. 17, pp. 1430–1436, 2019. DOI: 10.1080/15376494.2018.1432814.
  • W. Van Paepegem and J. Degrieck, Effects of load sequence and block loading on the fatigue response of fiber-reinforced composites, Mech. Adv. Mater. Struct., vol. 9, no. 1, pp. 19–35, 2002. DOI: 10.1080/153764902317224851.
  • J. Degrieck and W. Van Paepegem, Fatigue damage modeling of fibre-reinforced composite materials, Appl. Mech. Rev., vol. 54, no. 4, pp. 279–300, 2001. DOI: 10.1115/1.1381395.
  • Z. Hashin and A. Rotem, A fatigue failure criterion for fiber reinforced materials, J. Compos. Mater., vol. 7, no. 4, pp. 448–464, 1973. DOI: 10.1177/002199837300700404.
  • K. Reifsnider and Z. Gao, A micromechanics model for composites under fatigue loading, Int. J. Fatigue, vol. 13, no. 2, pp. 149–156, 1991. DOI: 10.1016/0142-1123(91)90007-L.
  • M.H.R. Jen and C.-H. Lee, Strength and life in thermoplastic composite laminates under static and fatigue loads. Part I: experimental, Int. J. Fatigue, vol. 20, no. 9, pp. 605–615, 1998. DOI: 10.1016/S0142-1123(98)00029-2.
  • M.H.R. Jen and C.-H. Lee, Strength and life in thermoplastic composite laminates under static and fatigue loads. Part II: formulation, Int. J. Fatigue, vol. 20, no. 9, pp. 617–629, 1998. DOI: 10.1016/S0142-1123(98)00030-9.
  • H. Whitworth, A stiffness degradation model for composite laminates under fatigue loading, Compos. Struct., vol. 40, no. 2, pp. 95–101, 1997. DOI: 10.1016/S0263-8223(97)00142-6.
  • W. Yao and N. Himmel, A new cumulative fatigue damage model for fibre-reinforced plastics, Compos. Sci. Technol., vol. 60, no. 1, pp. 59–64, 2000. DOI: 10.1016/S0266-3538(99)00100-1.
  • G.P. Sendeckyj, S.H. Yang, and D.L. Jones, A stiffness-based statistical model for predicting the fatigue life of graphite/epoxy laminates, J. Compos. Technol. Res., vol. 11, no. 4, pp. 129–134, 1989. DOI: 10.1520/CTR10165J.
  • Z. Khan, F.A. Al-Sulaiman, J.K. Farooqi, and M. Younas, Fatigue life predictions in woven carbon fabric/polyester composites based on modulus degradation, J. Reinf. Plast. Compos., vol. 20, no. 5, pp. 377–398, 2001. DOI: 10.1177/073168401772678706.
  • M.M. Shokrieh and L.B. Lessard, Progressive fatigue damage modeling of composite materials. Part I: modeling, J. Compos. Mater., vol. 34, no. 13, pp. 1056–1080, 2000. DOI: 10.1177/002199830003401301.
  • M.M. Shokrieh and L.B. Lessard, Progressive fatigue damage modeling of composite materials. Part II: material characterization and model verification, J. Compos. Mater., vol. 34, no. 13, pp. 1081–1116, 2000. DOI: 10.1177/002199830003401302.
  • Z. Hashin, Failure criteria for unidirectional fiber composites, J. Appl. Mech., vol. 47, no. 2, p. 329, 1980.
  • P. Papanikos, K. Tserpes, and S. Pantelakis, Modelling of fatigue damage progression and life of CFRP laminates, Fatigue Fract. Eng. Mater. Struct., vol. 26, no. 1, pp. 37–47, 2003. DOI: 10.1046/j.1460-2695.2003.00585.x.
  • C.R. Kennedy, C.M.Ó. Brádaigh, and S.B. Leen, A multiaxial fatigue damage model for fibre reinforced polymer composites, Compos. Struct., vol. 106, pp. 201–210, 2013. DOI: 10.1016/j.compstruct.2013.05.024.
  • A. Puck and H. Schürmann, Failure analysis of FRP laminates by means of physically based phenomenological models. In M.J. Hinton, A.S. Kaddour and P.D (EDs). Failure Criteria in Fibre-Reinforced-Polymer Composites, Soden, Elsevier: Amsterdam, Netherlands, pp. 832–876, 2004.
  • R. Aoki, R. Higuchi, and T. Yokozeki, Fatigue simulation for progressive damage in CFRP laminates using intra-laminar and inter-laminar fatigue damage models, Int. J. Fatigue, vol. 143, p. 106015, 2021. DOI: 10.1016/j.ijfatigue.2020.106015.
  • P.H. Geubelle and J.S. Baylor, Impact-induced delamination of composites: a 2D simulation, Compos. B: Eng., vol. 29, no. 5, pp. 589–602, 1998. DOI: 10.1016/S1359-8368(98)00013-4.
  • L. Zhang, R. Qiu, J. Cheng, and B. Liu, Experimental investigation and multiscale simulation on the bending fatigue of 2D SiCf/SiC composites, Int. J. Fatigue, vol. 144, p. 106051, 2021. DOI: 10.1016/j.ijfatigue.2020.106051.
  • J. Han, R. Wang, D. Hu, X. Liu, L. Zhang, X. Guo, and C. Cho, Multi-scale analysis and experimental research for turbine guide vanes made of 2D braided SiCf/SiC composites in high-cycle fatigue regime, Int. J. Fatigue, vol. 156, p. 106697, 2022. DOI: 10.1016/j.ijfatigue.2021.106697.
  • A. Sayyidmousavi, H. Bougherara, and Z. Fawaz, A multiscale approach for fatigue life prediction of polymer matrix composite laminates, J. Reinf. Plast. Compos., vol. 34, no. 13, pp. 1099–1109, 2015. DOI: 10.1177/0731684415588936.
  • P. Davidson, A.D. Hasanyan, and A.M. Waas, Multiscale fatigue modeling of composites. In: AIAA Scitech 2019 Forum, 2019. DOI: 10.2514/6.2019-1546.
  • Caporale, A., R. Luciano, and E. Sacco, Micromechanical analysis of interfacial debonding in unidirectional fiber-reinforced composites. Computers & structures, 2006. vol.84, no(31-32), pp. 2200–2211.
  • P. Gholami, M.A. Farsi, and M.A. Kouchakzadeh, Stochastic fatigue life prediction of fiber-reinforced laminated composites by continuum damage mechanics-based damage plastic model, Int. J. Fatigue, vol. 152, pp. 106456, 2021. DOI: 10.1016/j.ijfatigue.2021.106456.
  • T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., vol. 21, no. 5, pp. 571–574, 1973. DOI: 10.1016/0001-6160(73)90064-3.
  • A.L. Kalamkarov, I.V. Andrianov, and V.V. Danishevs’kyy, Asymptotic homogenization of composite materials and structures, Appl. Mech. Rev., vol. 62, no. 3, p. 030802, 2009. DOI: 10.1115/1.3090830.
  • S. Tamboura, H. Ayari, M. Shirinbayan, M.A. Laribi, H. Bendaly, H. Sidhom, A. Tcharkhtchi, and J. Fitoussi, Experimental and numerical multi-scale approach for sheet-molding-compound composites fatigue prediction based on fiber-matrix interface cyclic damage, Int. J. Fatigue, vol. 135, p. 105526, 2020. DOI: 10.1016/j.ijfatigue.2020.105526.
  • J. Fish, M. Bailakanavar, L. Powers, and T. Cook, Multiscale fatigue life prediction model for heterogeneous materials, Int. J. Numer. Methods Eng., vol. 91, no. 10, pp. 1087–1104, 2012. DOI: 10.1002/nme.4307.
  • P. Raghavan and S. Ghosh, A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding, Mech. Mater., vol. 37, no. 9, pp. 955–979, 2005. DOI: 10.1016/j.mechmat.2004.10.003.
  • J. Ju and H.-K. Lee, A micromechanical damage model for effective elastoplastic behavior of ductile matrix composites considering evolutionary complete particle debonding, Comput. Methods Appl. Mech. Eng., vol. 183, no. 3–4, pp. 201–222, 2000. DOI: 10.1016/S0045-7825(99)00219-4.
  • J. Ju and H.-K. Lee, A micromechanical damage model for effective elastoplastic behavior of partially debonded ductile matrix composites, Int. J. Solids Struct., vol. 38, no. 36–37, pp. 6307–6332, 2001. DOI: 10.1016/S0020-7683(01)00124-X.
  • S. Pyo and H.-K. Lee, An elastoplastic damage model for metal matrix composites considering progressive imperfect interface under transverse loading, Int. J. Plast., vol. 26, no. 1, pp. 25–41, 2010. DOI: 10.1016/j.ijplas.2009.04.004.
  • H.-K. Lee and S. Pyo, 3D-damage model for fiber-reinforced brittle composites with microcracks and imperfect interfaces, J. Eng. Mech., vol. 135, no. 10, pp. 1108–1118, 2009. DOI: 10.1061/(ASCE)EM.1943-7889.0000039.
  • J. Qu, The effect of slightly weakened interfaces on the overall elastic properties of composite materials, Mech. Mater., vol. 14, no. 4, pp. 269–281, 1993. DOI: 10.1016/0167-6636(93)90082-3.
  • S. Pyo and H.-K. Lee, Micromechanics-based elastic-damage analysis of laminated composite structures, Int. J. Solids Struct., vol. 46, no. 17, pp. 3138–3149, 2009. DOI: 10.1016/j.ijsolstr.2009.04.004.
  • J. Ju and T. Chen, Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities, Acta Mech., vol. 103, no. 1–4, pp. 103–121, 1994. DOI: 10.1007/BF01180221.
  • J.D. Eshelby and R.E. Peierls, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A: Math. Phys. Sci., vol. 241, no. 1226, pp. 376–396, 1957.
  • T. Mura, Micromechanics of Defects in Solids, Springer Science & Business Media: Berlin, Germany, 2013.
  • J. Xu, S.V. Lomov, I. Verpoest, S. Daggumati, W. Van Paepegem, and J. Degrieck, A progressive damage model of textile composites on meso-scale using finite element method: Fatigue damage analysis, Comput. Struct., vol. 152, pp. 96–112, 2015. DOI: 10.1016/j.compstruc.2015.02.005.
  • A. Kaddour, M.J. Hinton, P.A. Smith, and S. Li, Mechanical properties and details of composite laminates for the test cases used in the third world-wide failure exercise, J. Compos. Mater., vol. 47, no. 20–21, pp. 2427–2442, 2013. DOI: 10.1177/0021998313499477.
  • A.H. Gandomi, X.S. Yang, S. Talatahari, and A.H. Alavi, Firefly algorithm with chaos, Commun. Nonlinear Sci. Numer. Simul., vol. 18, no. 1, pp. 89–98, 2013. DOI: 10.1016/j.cnsns.2012.06.009.
  • P.D. Herrington and M. Sabbaghian, Fatigue failure of composite bolted joints, J. Compos. Mater., vol. 27, no. 5, pp. 491–512, 1993. DOI: 10.1177/002199839302700503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.