186
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Multiscale bridging method to characterize elasto-plastic properties of polymer nanocomposites

, , &
Pages 2334-2348 | Received 12 May 2022, Accepted 01 Dec 2022, Published online: 28 Dec 2022

References

  • B. J. Yang, Y. Y. Hwang, and H. K. Lee, Elastoplastic modeling of polymeric composites containing randomly located nanoparticles with an interface effect, Compos. Struct., vol. 99, pp. 123–130, 2013. DOI: 10.1016/j.compstruct.2012.11.043.
  • Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrichna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol., vol. 63, no. 15, pp. 2223–2253, 2003. DOI: 10.1016/S0266-3538(03)00178-7.
  • J. L. Tsai, and S. H. Tzeng, Characterizing mechanical properties of particulate nanocomposites using micromechanical approach, J. Compos. Mater., vol. 42, no. 22, pp. 2345–2361, 2008. DOI: 10.1177/0021998308095503.
  • M. Zappalorto, M. Salviato, and M. Quaresimin, A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids, Compos. Sci. Technol., vol. 72, no. 14, pp. 1683–1691, 2012. DOI: 10.1016/j.compscitech.2012.07.010.
  • S. Lee, J. Jung, and S. Ryu, Applicability of interface spring and interphase models in micromechanics for predicting effective stiffness of polymer-matric nanocomposite, Extreme Mech. Lett., vol. 49, pp. 101489, 2021. DOI: 10.1016/j.eml.2021.101489.
  • M. R. Zakaria, M. H. A. Kudus, H. M. Akil, and M. Z. M. Thirmizir, Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties, Compos. B. Eng., vol. 119, pp. 57–66, 2017. DOI: 10.1016/j.compositesb.2017.03.023.
  • S. Y. Fu, X. Q. Feng, B. Lauke, and Y. W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites, Compos. B. Eng., vol. 39, no. 6, pp. 933–961, 2008. DOI: 10.1016/j.compositesb.2008.01.002.
  • G. Qi, S. Du, B. Zhang, Z. Tang, and Y. Yu, Evaluation of carbon fiber/epoxy interfacial strength in transverse fiber bundle composite: Experiment and multiscale failure modeling, Compos. Sci. Technol., vol. 105, pp. 1–8, 2014. DOI: 10.1016/j.compscitech.2014.09.014.
  • Y. Zare, and K. Y. Rhee, Multistep modeling of Young’s modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles, Compos. Part A Appl. Sci., vol. 102, pp. 137–144, 2017. DOI: 10.1016/j.compositesa.2017.08.004.
  • M. Kazemi, M. H. G. Rad, and S. M. Hosseini, Nonlinear dynamic analysis of FG carbon nanotube/epoxy nanocomposite cylinder with large strains assuming particle/matrix interphase using MLPG method, Eng. Anal. Bound. Elem., vol. 132, pp. 126–145, 2021. DOI: 10.1016/j.enganabound.2021.06.028.
  • Y. Zare, and K. Y. Rhee, A simple and sensible equatioin for interphase potency in carbon nanotubes (CNT) reinforced nanocomposites, J. Mater. Res. Technol., vol. 9, no. 3, pp. 6488–6496, 2020. DOI: 10.1016/j.jmrt.2020.04.034.
  • C. M. Hadden, B. D. Jensen, A. Bandyopadhyay, G. M. Odegard, A. Koo, and R. Liang, Molecular modeling of EPON-862/graphite composites: interfacial characteristics for multiple crosslink densities, Compos. Sci. Technol., vol. 76, pp. 92–99, 2013. DOI: 10.1016/j.compscitech.2013.01.002.
  • J. S. Jang, B. Bouveret, J. Suhr, and R. F. Gibson, Combined numerical/experimental investigation of particle diameter and interphase effects on coefficient of thermal expansion and Young’s modulus of SiO2/Epoxy nanocomposites, Polym Compos., vol. 33, no. 8, pp. 1415–1423, 2012. DOI: 10.1002/pc.22268.
  • M. A. Bhuiyan, R. V. Pucha, M. Karevan, and K. Kalaitzidou, Tensile modulus of carbon nanotube/polypropylene composites – a computational study based on experimental characterization, Comput. Mater. Sci., vol. 50, no. 8, pp. 2347–2353, 2011. DOI: 10.1016/j.commatsci.2011.03.009.
  • M. A. Bhuiyan, R. V. Pucha, J. Worthy, M. Karevan, and K. Kalaitzidou, Defining the lower and upper limit of the effective modulus of CNT/polypropylene composites through integration of modeling and experiments, Compos. Struct., vol. 95, pp. 80–87, 2013. DOI: 10.1016/j.compstruct.2012.06.025.
  • M. Mortezaei, M. H. N. Famili, and M. Kokabi, The role of interfacial interactions on the glass-transition and viscoelastic properties of silica/polystyrene nanocomposite, Compos. Sci. Technol., vol. 71, no. 8, pp. 1039–1045, 2011. DOI: 10.1016/j.compscitech.2011.02.012.
  • D. Fragiadakis, P. Pissis, and L. Bokobza, Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites, Polymer., vol. 46, no. 16, pp. 6001–6008, 2005. DOI: 10.1016/j.polymer.2005.05.080.
  • V. Arrighi, I. J. McEwen, H. Qian, and M. B. Serrano Prieto, The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller, Polymer., vol. 44, no. 20, pp. 6259–6266, 2003. DOI: 10.1016/S0032-3861(03)00667-0.
  • W. Jian, X. Wang, H. Lu, and D. Lau, Molecular dynamics simulations of thermodymics and shape memory effect in CNT-epoxy nanocomposites, Compos. Sci. Technol., vol. 211, pp. 108849, 2021. DOI: 10.1016/j.compscitech.2021.108849.
  • J. P. Johnston, B. Koo, N. Subramanian, and A. Chattopadhyay, Modeling the molecular structure of the carbon fiber/polymer interphase for multiscale analysis of composites, Compos. B. Eng., vol. 111, pp. 27–36, 2017. DOI: 10.1016/j.compositesb.2016.12.008.
  • J. Yang, D. Custer, C. C. Chiang, Z. Meng, and X. H. Yao, , Understanding the mechanical and viscoelastic properties of graphene reinforced polycarbonate nanocomposites using coarse-grained molecular dynamics simulations, Comput. Mater. Sci., vol. 191, pp. 110339, 2021. DOI: 10.1016/j.commatsci.2021.110339.
  • M. Hadipeykani, F. Aghadavoudi, and D. Toghraie, A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coeddicient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study, Phys. A: Stat. Mech. Appl., vol. 546, pp. 123995, 2020. DOI: 10.1016/j.physa.2019.123995.
  • M. Karimi, A. Montazeri, and R. Ghajar, On the elasto-plastic behavior of CNT-polymer nanocomposites, Compos. Struct., vol. 160, pp. 782–791, 2017. DOI: 10.1016/j.compstruct.2016.10.053.
  • J. L. Tsai, S. H. Tzeng, and Y. T. Chiu, Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation, Compos. B. Eng., vol. 41, no. 1, pp. 106–115, 2010. DOI: 10.1016/j.compositesb.2009.06.003.
  • G. M. Odegard, T. C. Clancy, and T. S. Gates, Modeling of the mechanical properties of nanoparticle/polymer composites, Polymer., vol. 46, no. 2, pp. 553–562, 2005. DOI: 10.1016/j.polymer.2004.11.022.
  • M. Cho, S. Yang, S. Chang, and S. Yu, A study on the prediction of the mechanical properties of nanoparticulate composites using the homogenization method with the effective interface concept, Int. J. Numer. Meth. Eng., vol. 85, no. 12, pp. 1564–1583, 2011. DOI: 10.1002/nme.3039.
  • H. Shin, S. Yang, J. Choi, S. Chang, and M. Cho, Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: A multiscale approach, Chem. Phys. Lett., vol. 635, pp. 80–85, 2015. DOI: 10.1016/j.cplett.2015.06.054.
  • J. Choi, H. Shin, S. Yang, and M. Cho, The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: A multiscale approach, Compos. Struct., vol. 119, pp. 365–376, 2015. DOI: 10.1016/j.compstruct.2014.09.014.
  • S. Yang, and M. Cho, Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites, Appl. Phys. Lett., vol. 93, no. 4, pp. 043111, 2008. DOI: 10.1063/1.2965486.
  • S. Chang, S. Yang, H. Shin, and M. Cho, Multiscale homogenization model for thermoelastic behavior of epoxy-based composites with polydisperse SiC nanoparticles, Compos. Struct., vol. 128, pp. 342–353, 2015. DOI: 10.1016/j.compstruct.2015.03.041.
  • H. Shin, J. Choi, and M. Cho, An efficient multiscale homogenization modeling approach to describe hyperelastic behavior of polymer nanocomposites, Compos. Sci. Technol., vol. 175, pp. 128–134, 2019. DOI: 10.1016/j.compscitech.2019.03.015.
  • S. Yang, S. Yu, J. Ryu, J.-M. Cho, W. Kyoung, D.-S. Han and M. Cho, Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection, Int. J. Plast., vol. 41, pp. 124–146, 2013. DOI: 10.1016/j.ijplas.2012.09.010.
  • B. Kim, J. Choi, S. Yang, S. Yu, and M. Cho, Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites, Polymer., vol. 60, pp. 186–197, 2015. DOI: 10.1016/j.polymer.2015.01.043.
  • V. Varshney, S. S. Patnaik, A. K. Roy, and B. L. Farmer, A molecular dynamics study of epoxy-based networks: cross-linking procedure and prediction of molecular and material properties, Macromolecules., vol. 41, no. 18, pp. 6837–6842, 2008. DOI: 10.1021/ma801153e.
  • K. Terada, and N. Kikuchi, A class of general algorithms for multi-scale analyses of heterogeneous media, Comput. Methods Appl. Mech. Eng., vol. 190, no. 40-41, pp. 5427–5464, 2001. DOI: 10.1016/S0045-7825(01)00179-7.
  • K. Matsui, K. Terada, and K. Yuge, Two-scale finite element analysis of heterogeneous solids with periodic microstructures, Comput. Struct., vol. 82, no. 7-8, pp. 593–606, 2004. DOI: 10.1016/j.compstruc.2004.01.004.
  • J. M. Guedes, and N. Kikuchi, Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. Methods Appl. Mech. Eng., vol. 83, no. 2, pp. 143–198, 1990. DOI: 10.1016/0045-7825(90)90148-F.
  • H. Wang, and H. Shin, Influence of nanoparticulate diameter on fracture toughness improvement of polymer nanocomposites by a nanoparticle debonding mechanism: a multiscale study, Eng. Frac. Mech., vol. 261, pp. 108261, 2022. DOI: 10.1016/j.engfracmech.2022.108261.
  • Y. Cheng, K. Zhang, B. Liang, H. Cheng, and P. Liu, Incremental sequential homogenization on effective elastoplastic properties of composites with functionally graded interphase, Mech. Mater., vol. 167, pp. 104211, 2022. DOI: 10.1016/j.mechmat.2022.104211.
  • S. S. Nair, D. C. Hurley, S. Wang, and T. M. Young, Nanoscale characterization of interphase properties in maleated polypropylene-treated natural fiber-reinforced polymer composites, Polym Eng Sci., vol. 53, no. 4, pp. 888–896, 2013. DOI: 10.1002/pen.23330.
  • H. S. Bedi, M. Tiwari, and P. K. Agnihotri, Quantitative determination of size and properties of interphases in carbon nanotube-based multiscale composites, Carbon., vol. 132, pp. 181–190, 2018. DOI: 10.1016/j.carbon.2018.02.059.
  • M. Bazmara, M. Silani, and D. Iman, Effect of functionally graded interphase on the elasto-plastic behavior of nylon-6/clay nanocomposites; a numerical study, Def. Technol., vol. 17, no. 1, pp. 177–184, 2021. DOI: 10.1016/j.dt.2020.03.003.
  • J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Math. Phys. Eng., vol. 241, pp. 376–396, 1957.
  • S. Advani, and C. Tucker, The user of tensors to describe and predict fiber orientation in short fiber composites, J. Rheol., vol. 31, no. 8, pp. 751–784, 1987. DOI: 10.1122/1.549945.
  • E. T. Onat, and F. A. Leckie, Representation of mechanical behavior in the presence of changing internal structure, J. Appl. Mech., vol. 55, no. 1, pp. 1–10, 1988. DOI: 10.1115/1.3173630.
  • O. Pierard, C. Friebel, and I. Doghri, An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites, Int. J. Plast., vol. 22, no. 1, pp. 131–157, 2006. DOI: 10.1016/j.ijplas.2005.04.001.
  • A. Selmi, I. Doghri, and L. Adam, Micromechanical simulations of biaxial yield, hardening and plastic flow in short glass fiber reinforced polyamide, Int. J. Mech. Sci., vol. 53, no. 9, pp. 696–706, 2011. DOI: 10.1016/j.ijmecsci.2011.06.002.
  • S. Kammoun, L. Brassart, G. Robert, I. Doghri, and L. Delannay, Micromechanical modeling of short glass-fiber reinforced thermoplastics-isotropic damage of pseudograins, AIP Conf. Proc., vol. 1353, pp. 972–977, 2011.
  • I. Doghri, and A. Ouaar, Homogenization of two-phase elasto-plastic composite materials and structures Study of tangent operators, cyclic plasticity and numerical algorithms, Int. J. Solids Struct., vol. 40, no. 7, pp. 1681–1712, 2003. DOI: 10.1016/S0020-7683(03)00013-1.
  • B. Kim, J. Choi, S. Yang, S. Yu, and M. Cho, Multiscale modeling of interphase in crosslinked epoxy nanocomposite, Compos. B. Eng., vol. 120, pp. 128–142, 2017. DOI: 10.1016/j.compositesb.2017.03.059.
  • Y. Nakamura, M. Yamaguchi, M. Okubo, and T. Matsumoto, Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica, J. Appl. Polym. Sci., vol. 45, no. 7, pp. 1281–1289, 1992. DOI: 10.1002/app.1992.070450716.
  • J. Douce, J.-P. Boilot, J. Biteau, L. Scodellaro, and A. Jimenez, Effect of filler size and surface condition of nano-sized silica particles in polysiloxane coatings, Thin Solid Films., vol. 466, no. 1-2, pp. 114–122, 2004. DOI: 10.1016/j.tsf.2004.03.024.
  • A. S. Blivi, F. Benhui, J. Bai, D. Kondo, and F. Bédoui, Experimental evidence of size effect in nano-reinforced polymers: Case of silica reinforced PMMA, Polym. Test., vol. 56, pp. 337–343, 2016. DOI: 10.1016/j.polymertesting.2016.10.025.
  • O. T. Sanya, B. Oji, S. S. Owoeye, and E. J. Egbochie, Influence of particle size and particle loading on mechanical properties of silicon carbide–reinforced epoxy composites, Int J Adv Manuf Technol., vol. 103, no. 9-12, pp. 4787–4794, 2019. DOI: 10.1007/s00170-019-04009-1.
  • B. Arash, H. S. Park, and T. Rabczuk, Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model, Compos. B Eng., vol. 80, pp. 92–100, 2015. DOI: 10.1016/j.compositesb.2015.05.038.
  • B. Arash, H. S. Park, and T. Rabczuk, Tensile fracture behavior of short carbon nanotube reinforced polymer composites: A coarse-grained model, Compos. Struct., vol. 134, pp. 981–988, 2015. DOI: 10.1016/j.compstruct.2015.09.001.
  • M. Ries, J. Seibert, P. Steinmann, and S. Pfaller, Applying a generic and fast coarse-grained molecular dynamics model to extensively study the mechanical behavior of polymer nanocomposites, Express Polym. Lett., vol. 16, no. 12, pp. 1304–1321, 2022. DOI: 10.3144/expresspolymlett.2022.94.
  • K. Baek, H. Park, H. Shin, S. Yang, and M. Cho, Multiscale modeling to evaluate combined effect of covalent grafting and clustering of silica nanoparticles on mechanical behaviors of polyimide matrix composites, Compos. Sci. Technol., vol. 206, pp. 108673, 2021. DOI: 10.1016/j.compscitech.2021.108673.
  • H. Shin, K. Baek, J.-G. Han, and M. Cho, Homogenization Analysis of Polymeric Nanocomposites Containing Nanoparticulate Clusters, Compos. Sci. Technol., vol. 138, pp. 217–224, 2017. DOI: 10.1016/j.compscitech.2016.11.021.
  • M. Quaresimin, M. Salviato, and M. Zappalorto, A multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocomposites, Compos. Sci. Technol., vol. 91, pp. 16–21, 2014. DOI: 10.1016/j.compscitech.2013.11.015.
  • M. Salviato, M. Zappalorto, and M. Quaresimin, Plastic shear bands and fracture toughness improvements of nanoparticle filled polymers: a multiscale analytical model, Compos. Part A Appl. Sci. Manuf., vol. 48, pp. 144–152, 2013. DOI: 10.1016/j.compositesa.2013.01.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.