156
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Love wave propagation characteristics in a fluid-saturated cracked double porous layered structure

ORCID Icon, , &
Pages 2349-2361 | Received 22 Jul 2022, Accepted 01 Dec 2022, Published online: 25 Dec 2022

References

  • M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. ii. higher frequency range, J. Acoustical Soc. Am., vol. 28, no. 2, pp. 179–191, 1956. DOI: 10.1121/1.1908241.
  • M. A. Biot, Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., vol. 33, no. 4, pp. 1482–1498, 1962. DOI: 10.1063/1.1728759.
  • S. Gupta, S. Das, and R. Dutta, Peltier and seebeck effects on a nonlocal couple stress double porous thermoelastic diffusive material under memory-dependent Moore-Gibson-Thompson theory, Mech. Adv. Mater. Struct., pp. 1–24, 2021a. DOI: 10.1080/15376494.2021.2017525.
  • S. Gupta, R. Dutta, and S. Das, Love-type wave propagation in an inhomogeneous cracked porous medium loaded by heterogeneous viscous liquid layer, J. Vib. Eng. Technol., vol. 9, no. 3, pp. 433–448, 2021b. DOI: 10.1007/s42417-020-00237-y.
  • L.-L. Ke, Y.-S. Wang, and Z.-M. Zhang, Love waves in an inhomogeneous fluid saturated porous layered half-space with linearly varying properties, Soil Dyn. Earthquake Eng., vol. 26, no. 6-7, pp. 574–581, 2006. DOI: 10.1016/j.soildyn.2006.01.010.
  • P. Alam, S. Kundu, S. Gupta, and A. Saha, Study of torsional wave in a poroelastic medium sandwiched between a layer and a half-space of heterogeneous dry sandy media, Waves Random Complex Medium., vol. 28, no. 1, pp. 182–201, 2018. DOI: 10.1080/17455030.2017.1335915.
  • S. Bhattacharya, Exact solutions of SH wave equation for inhomogeneous media, Bull. Seismol. Soc. Am., vol. 60, no. 6, pp. 1847–1859, 1970. DOI: 10.1785/BSSA0600061847.
  • M. Biswas, and S. A. Sahu, Surface wave dispersion in imperfectly bonded flexoelectric-piezoelectric/FGPM bi-composite in contact of Newtonian liquid, Mech. Adv. Mater. Struct., pp. 1–18, 2022. DOI: 10.1080/15376494.2022.2067923.
  • S. Chaudhary, S. A. Sahu, N. Dewangan, and A. Singhal, Stresses produced due to moving load in a prestressed piezoelectric substrate, Mech. Adv. Mater. Struct., vol. 26, no. 12, pp. 1028–1041, 2019. DOI: 10.1080/15376494.2018.1430265.
  • F. Ebrahimi, M. Karimiasl, and A. Singhal, Magneto-electro-elastic analysis of piezoelectric–flexoelectric nanobeams rested on silica aerogel foundation, Eng. with Comput., vol. 37, no. 2, pp. 1007–1014, 2021. DOI: 10.1007/s00366-019-00869-z.
  • R. Kumhar, S. Kundu, and S. Gupta, Modelling of love waves in fluid saturated porous viscoelastic medium resting over an exponentially graded inhomogeneous half-space influenced by gravity, J. Appl. Comput. Mechanics., vol. 6, no. 3, pp. 517–530, 2020a.
  • A. Singhal, S. A. Sahu, and S. Chaudhary, Approximation of surface wave frequency in piezo-composite structure, Compos. B. Eng., vol. 144, pp. 19–28, 2018a. DOI: 10.1016/j.compositesb.2018.01.017.
  • G. Davies, and S. Zhen, Metallic foams: their production, properties and applications, J. Mater. Sci., vol. 18, no. 7, pp. 1899–1911, 1983. DOI: 10.1007/BF00554981.
  • R. Kumhar, S. Kundu, M. Maity, and S. Gupta, Analysis of interfacial imperfections and electro-mechanical properties on elastic waves in porous piezo-composite bars, Int. J. Mech. Sci., vol. 187, pp. 105926, 2020b. DOI: 10.1016/j.ijmecsci.2020.105926.
  • P. Liu, and K. Liang, Review functional materials of porous metals made by p/m, electroplating and some other techniques, J. Mater. Sci., vol. 36, no. 21, pp. 5059–5072, 2001. DOI: 10.1023/A:1012483920628.
  • P.-S. Liu, 2004. Introduction to Porous Materials. Beijing: Tsinghua University Press, pp. 299.
  • H.-P. Tang, and Z.-D. Zhang, Developmental states of porous metal materials, Rare Metal Mater. Eng., vol. 26, no. 1, pp. 1–6, 1997.
  • X. Olny, and C. Boutin, Acoustic wave propagation in double porosity media, J. Acoust. Soc. Am., vol. 114, no. 1, pp. 73–89, 2003. DOI: 10.1121/1.1534607.
  • G. I. Barenblatt, I. P. Zheltov, and I. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech., vol. 24, no. 5, pp. 1286–1303, 1960. DOI: 10.1016/0021-8928(60)90107-6.
  • J. Warren, and P. J. Root, The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J., vol. 3, no. 03, pp. 245–255, 1963. DOI: 10.2118/426-PA.
  • E. Aifantis, On the problem of diffusion in solids, Acta Mech., vol. 37, no. 3-4, pp. 265–296, 1980. DOI: 10.1007/BF01202949.
  • R. Wilson, and E. C. Aifantis, On the theory of consolidation with double porosity, Int. J. Eng. Sci., vol. 20, no. 9, pp. 1009–1035, 1982. DOI: 10.1016/0020-7225(82)90036-2.
  • R. Wilson, and E. Aifantis, A double porosity model for acoustic wave propagation in fractured-porous rock, Int. J. Eng. Sci., vol. 22, no. 8-10, pp. 1209–1217, 1984. DOI: 10.1016/0020-7225(84)90124-1.
  • D. E. Beskos, Dynamics of saturated rocks. I: equations of motion, J. Eng. Mech., vol. 115, no. 5, pp. 982–995, 1989. DOI: 10.1061/(ASCE)0733-9399(1989)115:5(982).
  • I. Vgenopoulou, and D. E. Beskos, Dynamics of saturated rocks. iv: column and borehole problems, J. Eng. Mech., vol. 118, no. 9, pp. 1795–1813, 1992. DOI: 10.1061/(ASCE)0733-9399(1992)118:9(1795).
  • K. Tuncay, and M. Y. Corapcioglu, Body waves in fractured porous media saturated by two immiscible Newtonian fluids, Transp. Porous Med., vol. 23, no. 3, pp. 259–273, 1996a. DOI: 10.1007/BF00167099.
  • K. Tuncay, and M. Y. Corapcioglu, Wave propagation in fractured porous media, Transp. Porous Med., vol. 23, no. 3, pp. 237–258, 1996b. DOI: 10.1007/BF00167098.
  • J. G. Berryman, and H. F. Wang, The elastic coefficients of double-porosity models for fluid transport in jointed rock, J. Geophys. Res., vol. 100, no. B12, pp. 24611–24627, 1995. DOI: 10.1029/95JB02161.
  • J. G. Berryman, and H. F. Wang, Elastic wave propagation and attenuation in a double-porosity dual-permeability medium, Int. J. Rock Mech. Min. Sci., vol. 37, no. 1-2, pp. 63–78, 2000. DOI: 10.1016/S1365-1609(99)00092-1.
  • M. Maity, S. Kundu, R. Kumhar, and S. Gupta, An electromechanical based model for love-type waves in anisotropic-porous-piezoelectric composite structure with interfacial imperfections, Appl. Math. Comput., vol. 418, pp. 126783, 2022. DOI: 10.1016/j.amc.2021.126783.
  • C. Kumari, S. Kundu, M. Maity, and S. Gupta, Parametric influence of magneto elasticity, initial stresses, porosity and thickness ratio on the phase and attenuation traits of SH-waves, Journal of Intelligent Material Systems and Structures, 1045389X211053056., vol. 33, no. 11, pp. 1364–1373, 2022. DOI: 10.1177/1045389X211053056.
  • S. Manna, D. Pramanik, and S. Althobaiti, Love-type surface wave propagation due to interior impulsive point source in a homogeneous-coated anisotropic poroelastic layer over a non-homogeneous extended substance, Waves Random Complex Medium., pp. 1–37, 2022. DOI: 10.1080/17455030.2022.2081737.
  • A. Z. Ansari, A. M. Saeed, A. Singhal, R. Tiwari, F. Shujat, and B. Kumar, Modeling of the liouville–green method to approximate the mechanical waves in functionally graded and piezo material with a comparative study, Waves Random Complex Medium., pp. 1–22, 2022. DOI: 10.1080/17455030.2022.2049921.
  • C. Bender, and S. Orszag, 1978. Advanced mathematical methods for scientists and engineers. New York: McGraw-Hill.
  • J. Du, X. Jin, J. Wang, and K. Xian, Love wave propagation in functionally graded piezoelectric material layer, Ultrasonics., vol. 46, no. 1, pp. 13–22, 2007. DOI: 10.1016/j.ultras.2006.09.004.
  • N. Fröman, and P. O. Fröman, 2002. Physical Problems Solved by the Phase-Integral Method. Cambridge, United Kingdom: Cambridge University Press.
  • A. Ishimaru, 2017. Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications. Hoboken, New Jersey: John Wiley & Sons, Inc. (may).
  • J. Liu, and Z. Wang, The propagation behavior of love waves in a functionally graded layered piezoelectric structure, Smart Mater. Struct., vol. 14, no. 1, pp. 137–146, 2005. DOI: 10.1088/0964-1726/14/1/013.
  • S. A. Sahu, J. Baroi, A. Chattopadhyay, and S. Nirwal, Characterization of polarized shear waves in FGPM composite structure with imperfect boundary: WKB method, Int. J. Appl. Mechanics., vol. 11, no. 09, pp. 1950083, 2019. DOI: 10.1142/S1758825119500832.
  • S. A. Sahu, and S. Nirwal, An asymptotic approximation of love wave frequency in a piezo-composite structure: WKB approach, Waves Random Complex Medium., vol. 31, no. 1, pp. 117–145, 2021. DOI: 10.1080/17455030.2019.1567955.
  • M. K. Singh, S. A. Sahu, A. Singhal, and S. Chaudhary, Approximation of surface wave velocity in smart composite structure using Wentzel–Kramers–Brillouin method, J. Intell. Mater. Syst. Struct., vol. 29, no. 18, pp. 3582–3597, 2018. DOI: 10.1177/1045389X18786464.
  • A. Singhal, S. A. Sahu, and S. Chaudhary, Liouville-green approximation: an analytical approach to study the elastic waves vibrations in composite structure of piezo material, Compos. Struct., vol. 184, pp. 714–727, 2018b. DOI: 10.1016/j.compstruct.2017.10.031.
  • A. E. H. Love, 1920. Mathematical Theory of Elasticity. Cambridge: Cambridge University Press.
  • Z-j Dai, and Z.-B. Kuang, Love waves in double porosity media, J. Sound Vib., vol. 296, no. 4-5, pp. 1000–1012, 2006. DOI: 10.1016/j.jsv.2006.03.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.