221
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Experimental investigation of low-velocity impact behavior and CAI on composite laminates by discrete interleaved toughening

, , , , &
Pages 2460-2471 | Received 25 Oct 2022, Accepted 11 Dec 2022, Published online: 28 Dec 2022

References

  • M. R. Abir, T. E. Tay, M. Ridha, and H. P. Lee, On the relationship between failure mechanism and compression after impact (CAI) strength in composites, Compos. Struct., vol. 182, pp. 242–250, 2017. DOI: 10.1016/j.compstruct.2017.09.038.
  • H. Mei, Y. F. Tan, D. Zhang, and L. F. Cheng, A novel delamination defects designed for understanding mechanical degradation in a laminated C/SiC composites, J. Alloys Compd., vol. 770, pp. 1138–1146, 2019. DOI: 10.1016/j.jallcom.2018.08.104.
  • H. R. Wang, S. C. Long, X. Q. Zhang, and X. H. Yao, Study on the delamination behavior of thick composite laminates under low-energy impact, Compos. Struct., vol. 184, pp. 461–473, 2018. DOI: 10.1016/j.compstruct.2017.09.083.
  • X. F. Zhang, X. Wu, Y. He, S. Yang, S. Chen, S. Zhang and D. Zhou, CFRP barely visible impact damage inspection based on an ultrasound wave distortion indicator, Compos. Part B: Eng., vol. 168, pp. 152–158, 2019. DOI: 10.1016/j.compositesb.2018.12.092.
  • J. C. Prichard, and P. J. Hogg, The role of impact damage in post-impact compression testing, Composites, vol. 21, no. 6, pp. 503–511, 1990. DOI: 10.1016/0010-4361(90)90423-T.
  • Q. Wang, Q. Y. Chen, Y. J. Chen, J. D. Li, and Q. Li, The effect of internal delamination damage on the tensile strength of aeronautical composites, Acta Mech. Solida Sin., vol. 35, no. 1, pp. 1–14, 2022. DOI: 10.1007/s10338-022-00335-2.
  • Y. D. Zhang, K. Huang, R. Q. Sun, F. Liao, L. C. Guo, and L. Zhang, Effect of embedded delamination on the compression performance of carbon fiber reinforced composites, Compos. Struct., vol. 281, pp. 115063, 2022. DOI: 10.1016/j.compstruct.2021.115063.
  • M. N. Saleh, H. M. El-Dessouky, M. Saeedifar, S. T. D. Freitas, R. J. Scaife, and D. Zarouchas, Compression after multiple low velocity impacts of NCF, 2D, and 3D woven composites, Compos. Part A: Appl. Sci. Manuf., vol. 125, pp. 105576, 2019. DOI: 10.1016/j.cja.2022.03.003.
  • S. Z. H. Shah, S. Karuppanan, P. S. M. Megat-Yusoff, and Z. Sajid, Impact resistance and damage tolerance of fiber reinforced composites: A review, Compos. Struct., vol. 217, pp. 100–121, 2019. DOI: 10.1016/j.compstruct.2019.03.021.
  • D. J. Bull, A. E. Scott, S. M. Spearing, and I. Sinclair, The influence of toughening-particles in CFRPs on low velocity impact damage resistance performance, Compos. Part A: Appl. Sci. Manuf., vol. 58, pp. 47–55, 2014. DOI: 10.1016/j.compositesa.2013.11.014.
  • Z. B. Zhao, Z. W. Yang, W. Zhang, D. J. Liu, Y. Li, and J. S. Chen, Low-velocity impact response and infrared radiation characteristics of thermoplastic/thermoset composites, Chinese J. Aeronaut., vol. 35, no. 10, pp. 365–380, 2022. DOI: 10.1016/j.cja.2022.03.003.
  • H. Macdonald, D. Nash, and M. M. Stack, Repeated impact of simulated hail ice on glass fibre composite materials, Wear., vol. 432-433, pp. 102926, 2019. DOI: 10.1016/j.wear.2019.06.001.
  • B. B. Liao, Z. Zhang, L. Sun, J. Zhou, P. Wang, Y. Lin, W. Wu and D. Fang, Experimental investigation on the double-position impact responses and damage mechanism for Z-pinned composite laminates, Compos. Struct., vol. 259, pp. 113463, 2021. DOI: 10.1016/j.compstruct.2020.113463.
  • H. W. Zhang, D. Yang, H. Ding, H. Wang, Q. Xu, Y. Ma and Y. Bi, Effect of Z-pin insertion angles on low-velocity impact mechanical response and damage mechanism of CFRP laminates with different layups, Compos. Part A: Appl. Sci. Manuf., vol. 150, pp. 106593, 2021. DOI: 10.1016/j.compositesa.2021.106593.
  • J. Konlan, P. Mensah, S. Ibekwe, K. Crosby, and G. Q. Li, Vitrimer based composite laminates with shape memory alloy Z-pins for repeated healing of impact induced delamination, Compos. Part B: Eng., vol. 200, pp. 108324, 2020. DOI: 10.1016/j.compositesb.2020.108324.
  • A. Sohail, X. T. Zheng, L. L. Yan, C. Zhang, and X. Wang, Influence of asymmetric hybridization on impact response of 3D orthogonal woven composites, Compos. Sci. Technol., vol. 199, pp. 108326, 2020. DOI: 10.1016/j.compscitech.2020.108326.
  • D. Zhang, X. T. Zheng, Z. B. Wang, T. C. Wu, and A. Sohail, Effects of braiding architectures on damage resistance and damage tolerance behaviors of 3D braided composites, Compos. Struct., vol. 111565, pp. 232, 2020. DOI: 10.1016/j.compstruct.2019.111565.
  • H. W. Zhang, R. He, B. Hou, Y. L. Li, H. Cui, and W. Yang, Artificial hail ice impact damage of laminated composite T-joint with stitching reinforcement, Compos. Struct., vol. 278, pp. 114714, 2021. DOI: 10.1016/j.compstruct.2021.114714.
  • G. Erdoga, and K. Bilisik, Compression after low-velocity impact (CAI) properties of multistitched composites, Mech. Adv. Mater. Struc., vol. 25, no. 8, pp. 623–636, 2018. DOI: 10.1080/15376494.2017.1308601.
  • M. D. Isa, S. Feih, and A. P. Mouritz, Compression fatigue properties of z-pinned quasi-isotropic carbon/epoxy laminate with barely visible impact damage, Compos. Struct., vol. 93, no. 9, pp. 2269–2276, 2011. DOI: 10.1016/j.compstruct.2011.03.015. [InsertedFromOnline
  • Y. Liu, J.-P. Yang, H.-M. Xiao, C.-B. Qu, Q.-P. Feng, S.-Y. Fu and Y. Shindo, Role of matrix modification on interlaminar shear strength of glass fibre/epoxy composites, Compos. Part B: Eng., vol. 43, no. 1, pp. 95–98, 2012. DOI: 10.1016/j.compositesb.2011.04.037.
  • X. B. Teng, Y. Xu, X. Hui, W. Zhang, H. Dai, W. Liu, C. Ma and Y. Li, Experimental study on the low-velocity impact and post-impact flexural properties of curved CFRP laminates reinforced by pre-hole Z-pinning (PHZ) technique, Mech. Adv. Mater. Struc., vol. 2022, pp. 1–12, 2022. DOI: 10.1080/15376494.2022.2077485.
  • K. F. Nilsson, L. E. Asp, J. E. Alpman, and L. Nystedt, Delamination buckling and growth for delaminations at different depths in a slender composite panel, Int. J. Solids Struct., vol. 38, no. 17, pp. 3039–3071, 2001. DOI: 10.1016/S0020-7683(00)00189-X.
  • K. T. Tan, N. Watanabe, Y. Iwahori, and T. Lshikawa, Effect of stitch density and stitch thread thickness on compression after impact strength and response of stitched composites, Compos. Sci. Technol., vol. 72, no. 5, pp. 587–598, 2012. DOI: 10.1016/j.compscitech.2012.01.003.
  • S. Hoseinlaghab, M. Farahani, M. Safarabadi, and S. S. Jalali, Comparison and identification of efficient nanoparticles to improve the impact resistance of glass/epoxy laminates: Experimental and numerical approaches, Mech. Adv. Mater. Struc., vol. 2022, pp. 1–16, 2022. DOI: 10.1080/15376494.2021.2023914.
  • A. R. Ravindran, R. B. Ladani, A. J. Kinloch, C. H. Wang, and A. P. Mouritz, Improving the delamination resistance and impact damage tolerance of carbon fibre-epoxy composites using multi-scale fibre toughening, Compos. Part A: Appl. Sci. Manuf., vol. 150, pp. 106624, 2021. DOI: 10.1016/j.compositesa.2021.106624.
  • K. Katagiri, N. Kishimoto, H. Yamaguchi, T. Okumura, S. Kawakita, S. Honda and K. Sasaki, Effects of stacking sequences of non-hydrophobic cellulose nanofiber dispersion layer on impact properties of carbon fiber/cellulose nanofiber reinforced epoxy composite, Mech. Adv. Mater. Struc., vol. 2021, pp. 1–10, 2021. DOI: 10.1080/15376494.2021.2018743.
  • D. W. Liu, G. Li, B. Li, Y. H. Luan, H. Ling, and X. P. Yan, In-situ toughened CFRP composites by shear-calender orientation and fiber-bundle filtration of PA microparticles at prepreg interlayer, Compos. Part A: Appl. Sci. Manuf., vol. 84, pp. 165–174, 2016. DOI: 10.1016/j.compositesa.2016.01.015.
  • J. W. Mclaughlin, E. Tobin, and R. M. O’Higgins, An investigation of Polyether Imide (PEI) toughening of carbon fibre-reinforced Polyether Ether Ketone (PEEK) laminates, Mater. Des., vol. 212, pp. 110189, 2021. DOI: 10.1016/j.matdes.2021.110189.
  • B. Beylergil, M. Tanoğlu, and E. Aktaş, Effect of polyamide-6,6 (PA 66) nonwoven veils on the mechanical performance of carbon fiber/epoxy composites, Compos. Struct., vol. 194, pp. 21–35, 2018. DOI: 10.1016/j.compstruct.2018.03.097.
  • B. Beylergil, M. Tanoğlu, and E. Aktaş, Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils, Steel. Compos. Struct., vol. 31, no. 2, pp. 113–123, 2019. DOI: 10.12989/scs.2019.31.2.113.
  • Bertan Beylergi̇l, Metin Tanoğlu, and Engin Aktaş, Modification of carbon fibre/epoxy composites by polyvintl alcohol (PVA) based electrospun nanofibres, ADV. Compos. Lett., vol. 25, no. 3, pp. 096369351602500, 2016. DOI: 10.1177/096369351602500303.
  • B. Beylergil, Interlaminar fracture and crack-healing capability of carbon fiber/rpoxy composites toughened with 3D-printed poly-ɛ-caprolactone grid structures, J of Applied Polymer Sci., vol. 139, no. 17, pp. 52038, 2022. DOI: 10.1002/app.52038.
  • B. Beylergil, M. Tanoğlu, and E. Aktaş, Enhancement of interlaminar fracture toughness of carbon fiber-epoxy composites using polyamide-6,6 electrospun nanofibers, J. Appl. Polym. Sci., vol. 134, no. 35, pp. 45244, 2017. DOI: 10.1002/app.45244.
  • B. Beylergil, M. Tanoğlu, and E. Aktaş, Experimental and statistical analysis of carbon fiber/epoxy composites interleaved with nylon 6,6 nonwoven fabric interlayers, J. Compos. Mater., vol. 54, no. 27, pp. 4173–4184, 2020. DOI: 10.1177/0021998320927740.
  • M. Povolo, E. Maccaferri, D. Cocchi, T.M. Brugo, L. Mazzocchetti, L. Giorgini and A. Zucchelli, Damping and mechanical behaviour of composite laminates interleaved with rubbery nanofibers, Compos. Struct., vol. 272, pp. 114228, 2021. DOI: 10.1016/j.compstruct.2021.114228.
  • H. Taheri, M. Oliaei, H. Ipakchi, and H. Saghafi, Toughening phenolic composite laminates by interleaving hybrid pyrolytic carbon/polyvinyl butyral nanomat, Compos. Part B: Eng., vol. 191, pp. 107981, 2020. DOI: 10.1016/j.compositesb.2020.107981.
  • M. Yasaee, C. Killock, J. Hartley, and I. P. Bond, Control of compressive fatigue delamination propagation of impact damaged composites using discrete thermoplastic interleaves, Appl Compos Mater., vol. 22, no. 5, pp. 559–572, 2015. DOI: 10.1007/s10443-014-9423-2.
  • A. Ramji, Y. G. Xu, M. Yasaee, M. Grasso, and P. Webb, Influence of veil interleave distribution on the delamination resistance of cross-ply CFRP laminates under low velocity impact, Int. J. Impact Eng., vol. 157, pp. 103997, 2021. DOI: 10.1016/j.ijimpeng.2021.103997.
  • A. Ramji, Y. G. Xu, M. Yasaee, M. Grasso, and P. Webb, Delamination migration in CFRP laminates under mode I loading, Compos. Sci. Technol., vol. 190, pp. 108067, 2020. DOI: 10.1016/j.compscitech.2020.108067.
  • M. Yasaee, I. P. Bond, R. S. Trask, and E. S. Greenhalgh, Mode II interfacial toughening through discontinuous interleaves for damage suppression and control, Compos. Part A: Appl. Sci. Manuf., vol. 43, no. 1, pp. 121–128, 2012. DOI: 10.1016/j.compositesa.2011.09.026.
  • M. Yasaee, I. P. Bond, R. S. Trask, and E. S. Greenhalgh, Mode I interfacial toughening through discontinuous interleaves for damage suppression and control, Compos. Part A: Appl. Sci. Manuf., vol. 43, no. 1, pp. 198–207, 2012. DOI: 10.1016/j.compositesa.2011.10.009.
  • C. Chen, S. Nesbitt, J. Reiner, R. Vaziri, A. Poursartip, and G. Fernlund, Cure path dependency of static and dynamic mode II interlaminar fracture toughness of interlayer toughened composite laminates, Compos. Sci. Technol., vol. 200, pp. 108444, 2020. DOI: 10.1016/j.compscitech.2020.108444.
  • M. Yasaee, I. P. Bond, R. S. Trask, and E. S. Greenhalgh, Damage control using discrete thermoplastic film inserts, Compos. Part A: Appl. Sci. Manuf., vol. 43, no. 6, pp. 978–989, 2012. DOI: 10.1016/j.compositesa.2012.01.011.
  • ASTM International, ASTM Standard D7136/D7136M-15: Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event, ASTM International, West Conshohocken, PA, 2015.
  • ASTM International, ASTM Standard D7137/D7137M-12: Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates, ASTM International, West Conshohocken, PA, 2012.
  • I. Ivañez, S. K. Garcia-Castillo, S. Sanchez-Saez, and E. Barbero, Experimental study of the impact behavior of repaired thin laminates with double composite patch, Mech. Adv. Mater. Struc., vol. 27, no. 19, pp. 1701–1708, 2020. DOI: 10.1080/15376494.2018.1524952.
  • H. Y. Choi, and F. K. Chang, A Model for Predicting Damage in Graphite/Epoxy Laminated Composites Resulting from Low-velocity Point Impact, J. Compos. Mater., vol. 26, no. 14, pp. 2134–2169, 1992. DOI: 10.1177/002199839202601408.
  • J. A. Wu, Z. W. Zhang, X. Q. Dai, L. Q. Duan, Y. Lin, and M. Sun, Effect of stacking sequence on multi-point low-velocity impact and compression after impact damage mechanisms of UHMWPE composites, Polym. Compos., vol. 42, no. 12, pp. 6500–6511, 2021. DOI: 10.1002/pc.26316.
  • J. W. Zhou, B. B. Liao, Y. Y. Shi, L. Q. Ning, Y. J. Zuo, and L. Y. Jia, Experimental investigation of the double impact position effect on the mechanical behavior of low-velocity impact in CFRP laminates, Compos. part B: Eng., vol. 193, pp. 108020, 2020. DOI: 10.1016/j.compositesb.2020.108020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.