387
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Deformation and energy absorption of the laminated reentrant honeycomb structures under static and dynamic loadings

ORCID Icon, , & ORCID Icon
Pages 2472-2482 | Received 29 Oct 2022, Accepted 11 Dec 2022, Published online: 02 Jan 2023

References

  • D. Mousanezhad, B. Haghpanah, R. Ghosh, A. M. Hamouda, H. Nayeb-Hashemi, and A. Vaziri, Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach, Theor. Appl. Mech. Lett., vol. 6, no. 2, pp. 81–96, 2016. DOI: 10.1016/j.taml.2016.02.004.
  • Z. G. Wang, Recent advances in novel metallic honeycomb structure, Compos. B Eng., vol. 166, pp. 731–741, 2019. DOI: 10.1016/j.compositesb.2019.02.011.
  • R. S. Lakes, Foam structures with a negative Poisson's ratio, Science, vol. 235, no. 4792, pp. 1038–1040, 1987. DOI: 10.1126/science.1149815.
  • Y. Gao and H. Huaiwei, Energy absorption characteristics and optimization of three-beam star honeycomb, Mech. Adv. Mater. Struct., pp. 1–15, 2022. published online. DOI: 10.1080/15376494.2022.2037171.
  • J. J. Zhang, G. X. Lu, and Z. You, Large deformation and energy absorption of additively manufactured auxetic materials and structures: a review, Compos. B. Eng., vol. 201, pp. 108340, 2020. DOI: 10.1016/j.compositesb.2020.108340.
  • L. L. Jiang, and H. Hu, Low-velocity impact response of multilayer orthogonal structural composite with auxetic effect, Compos. Struct., vol. 169, pp. 62–68, 2020. DOI: 10.1016/j.compstruct.2016.10.018.
  • W. B. Hou, X. Yang, W. Zhang, and Y. Xia, Design of energy-dissipating structure with functionally graded auxetic cellular material, Int. J. Crashworthiness, vol. 23, no. 4, pp. 366–376, 2017. DOI: 10.1080/13588265.2017.1328764.
  • X. Ren, Y. Zhang, C. Z. Han, D. Han, X. Y. Zhang, X. G. Zhang, and Y. M. Xie, Mechanical properties of foamfilled auxetic circular tubes: Experimental and numerical study, Thin. Wall. Struct., vol. 170, pp. 108584, 2022. DOI: 10.1016/j.tws.2021.108584.
  • W. Miller, C. W. Smith, and K. E. Evans, Honeycomb cores with enhanced buckling strength, Compos. Struct., vol. 93, pp. 1072–1077, 2011. DOI: 10.1016/j.compstruct.2010.09.021.
  • W. Y. Liu, N. L. Wang, T. Luo, and Z. Q. Lin, In-plane dynamic crushing of re-entrant auxetic cellular structure, Mater. Des., vol. 100, pp. 84–91, 2016. DOI: 10.1016/j.matdes.2016.03.086.
  • H. L. Tan, Z. C. He, K. X. Li, Eric Li, A. G. Cheng, and B. Xu, In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson's ratio, Compos. Struct., vol. 229, pp. 111415, 2019. DOI: 10.1016/j.compstruct.2019.111415.
  • Z. X. Zhou, J. N. Zhou, and H. L. Fan, Plastic analyses of thin-walled steel honeycombs with reentrant deformation style, Mat. Sci. Eng. A, vol. 688, pp. 123–133, 2017. DOI: 10.1016/j.msea.2017.01.056.
  • X. Ren, R. Das, P. Tran, T. D. Ngo, and Y. M. Xie, Auxetic metamaterials and structures: a review, Smart Mater. Struct., vol. 27, pp. 1–38, 2018. DOI: 10.1088/1361-665X/aaa61c.
  • D. Rayneau-Kirkhope, Y. Mao, and R. Farr, Ultralight fractal structures from hollow tubes, Phys. rev. lett., vol. 109, no. 20, pp. 204301, 2012. DOI: 10.1103/PhysRevLett.109.204301.
  • D. Li, J. H. Yin, L. Dong, and R. S. Lakes, Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative Poisson's ratio, Smart. Mater. Struct., vol. 26, no. 2, pp. 025014, 2016. DOI: 10.1088/1361-665X/26/2/025014.
  • H. Wang, Z. X. Lu, Z. Y. Yang, and X. Li, A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance, Compos. Struct., vol. 208, pp. 758–770, 2019. DOI: 10.1016/j.compstruct.2018.10.024.
  • C. Qi, F. Jiang, A. Remennikov, L. Z. Pei, J. Liu, J. S. Wang, X. W. Liao, and S. Yang, Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs, Compos. B. Eng., vol. 197, pp. 108117, 2020. DOI: 10.1016/j.compositesb.2020.108117.
  • A. Ingrole, A. Hao, and R. Liang, Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement, Mater. Des., vol. 117, pp. 72–83, 2017. DOI: 10.1016/j.matdes.2016.12.067.
  • D. Li, J. Yin, L. Dong, and R.S. Lakes, Strong re-entrant cellular structures with negative Poisson’s ratio, J. Mater. Sci., vol. 53, no. 5, pp. 3493–3499, 2018. DOI: 10.1007/s10853-017-1809-8.
  • D. Xiao, Z. Dong, Y. Li, W. Wu, and D. Fang, Compression behavior of the graded metallic auxetic reentrant honeycomb: experiment and finite element analysis, Mater. Sci. Eng. A, vol. 758, pp. 163–171, 2019. DOI: 10.1016/j.msea.2019.04.116.
  • Z.-X. Lu, X. Li, Z.-Y. Yang, and F. Xie, Novel structure with negative Poisson’s ratio and enhanced Young’s modulus, Compos. Struct., vol. 138, pp. 243–252, 2016. DOI: 10.1016/j.compstruct.2015.11.036.
  • X. Li, Z. Lu, Z. Yang, and C. Yang, Directions dependence of the elastic properties of a 3D augmented re-entrant cellular structure, Mater. Des., vol. 134, pp. 151–162, 2017. DOI: 10.1016/j.matdes.2017.08.024.
  • X. Li, Z. Lu, Z. Yang, Q. Wang, and Y. Zhang, Yield surfaces of periodic honeycombs with tunable Poisson’s ratio, Int. J. Mech. Sci., vol. 141, pp. 290–302, 2018. DOI: 10.1016/j.ijmecsci.2018.04.005.
  • M.-H. Fu, Y. Chen, and L.-L. Hu, A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength, Compos. Struct., vol. 160, pp. 574–585, 2017. DOI: 10.1016/j.compstruct.2016.10.090.
  • M.-H. Fu, Y. Chen, and L.-L. Hu, Bilinear elastic characteristic of enhanced auxetic honeycombs, Compos. Struct., vol. 175, pp. 101–110, 2017. DOI: 10.1016/j.compstruct.2017.04.007.
  • J. Hou, D. Li, and L. Dong, Mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio, J. Mater. Sci., vol. 53, no. 14, pp. 10209–10216, 2018. DOI: 10.1007/s10853-018-2298-0.
  • S. Hou, T. Li, Z. Jia, and L. Wang, Mechanical properties of sandwich composites with 3D-printed auxetic and non-auxetic lattice cores under low velocity impact, Mater. Des., vol. 160, pp. 1305–1321, 2018. DOI: 10.1016/j.matdes.2018.11.002.
  • R. Yu, W. Luo, H. Yuan, J. Liu, W. He, and Z. Yu, Experimental and numerical research on foam filled re-entrant cellular structure with negative Poisson’s ratio, Thin-Walled Struct., vol. 153, p. 106679, 2020. DOI: 10.1016/j.tws.2020.106679.
  • C. Quan, B. Han, Z. Hou, Q. Zhang, X. Tian, and T.J. Lu, 3D printed continuous fiber reinforced composite auxetic honeycomb structures, Compos. B Eng., vol. 187, p. 107858, 2020. DOI: 10.1016/j.compositesb.2020.107858.
  • X.L. Peng, C. Soyarslan, and S. Bargmann, Phase contrast mediated switch of auxetic mechanism in composites of infilled re-entrant honeycomb microstructures, Extreme Mech. Lett., vol. 35, p. 100641, 2020. DOI: 10.1016/j.eml.2020.100641.
  • S. Yang, C. Qi, D. Wang, R. Gao, H. Hu, and J. Shu, A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores, Adv. Mech. Eng., vol. 5, p. 589216, 2013. DOI: 10.1155/2013/589216.
  • D. Xiao, X. Chen, Y. Li, W. Wu, and D. Fang, The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading experiments and finite element analysis, Mater. Des., vol. 176, p. 107840, 2019. DOI: 10.1016/j.matdes.2019.107840.
  • W. Zeng, W. Jiang, J. Liu, and W. Huang, Fabrication method and dynamic responses of composite sandwich structure with reentrant honeycomb cores, Compos. Struct., vol. 299, p. 116084, 2022. DOI: 10.1016/j.compstruct.2022.116084.
  • X. Jin, Z. Wang, J. Ning, G. Xiao, E. Liu, and X. Shu, Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading, Compos. B Eng., vol. 106, pp. 206–217, 2016. DOI: 10.1016/j.compositesb.2016.09.037.
  • R.R. Madke and R. Chowdhury, Anti-impact behavior of auxetic sandwich structure with braided face sheets and 3D re-entrant cores, Compos. Struct., vol. 236, p. 111838, 2020. DOI: 10.1016/j.compstruct.2019.111838.
  • X. Lan, S. Feng, Q. Huang, and T. Zhou, A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores, Aerosp. Sci. Technol., vol. 87, pp. 37–47, 2019. DOI: 10.1016/j.ast.2019.01.031.
  • C. Qi, A. Remennikov, L.Z. Pei, S. Yang, Z.H. Yu, and T.D. Ngo, Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations, Compos. Struct., vol. 180, pp. 161–178, 2017. DOI: 10.1016/j.compstruct.2017.08.020.
  • L.J. Gibson and M.F. Ashby, Cellular Solids: structure and Properties, 2nd ed. Cambridge: Cambridge University Press, 1997.
  • X.G. Zhang, W. Jiang, Y. Zhang, C. Luo, X.Y. Zhang, D. Han, J. Hao, X.C. Teng, Y.M. Xie and X. Ren, Energy absorption properties of composite tubes with hexagonal and re-entrant honeycomb fillers, Constr. Build. Mater., vol. 356, p. 129298, 2022, DOI: 10.1016/j.conbuildmat.2022.129298.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.