179
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Impact strength improvement of adhesively bonded structures using natural date palm tree fibers

, , ORCID Icon &
Pages 2483-2493 | Received 09 Nov 2022, Accepted 11 Dec 2022, Published online: 23 Dec 2022

References

  • F. Delzendehrooy, M.R. Ayatollahi, A. Akhavan-Safar and L.F.M. da Silva, Strength improvement of adhesively bonded single lap joints with date palm fibers: Effect of type, size, treatment method and density of fibers, Compos. Part B: Eng., vol. 188, pp. 107874, 2020. DOI: 10.1016/j.compositesb.2020.107874.
  • L. F. da Silva, A. Pirondi, and A. Öchsner, Hybrid Adhesive Joints, Vol. 6. Heidelberg, Germany: Springer Science & Business Media, 2011.
  • J. Machado, E. Marques, and L. F. da Silva, Adhesives and adhesive joints under impact loadings: An overview, J. Adhes., vol. 94, no. 6, pp. 421–452, 2018. DOI: 10.1080/00218464.2017.1282349.
  • Y. Guishen, C. Xin, and W. Zitao, Effect of adhesive ductility and joint configuration on the tensile-shear behaviors of friction stir spot weld bonding joints, J. Adhes., vol. 98, no. 11, pp. 1663–1686, 2022. DOI: 10.1080/00218464.2021.1932484.
  • A.C. Passos, M.M. Arouche, R.A.A. Aguiar, H.R.M. Costa, S. de Barros and E.M. Sampaio, Adhesion of epoxy and polyurethane adhesives in pultruded composite material, J. Adv. Join. Process., vol. 3, pp. 100045, 2021. DOI: 10.1016/j.jajp.2021.100045.
  • A. Barbosa, L. da Silva, and A. Öchsner, Effect of the amount of cork particles on the strength and glass transition temperature of a structural adhesive, Proc. Inst. Mech. Eng., Part L: J. Mater.: Design Appl., vol. 228, no. 4, pp. 323–333, 2014. DOI: 10.1177/1464420713493581.
  • P. K. Mallick, Fiber-Reinforced Composites: materials, Manufacturing, and Design. Florida, USA: CRC Press, 2007.
  • M. Khayamdar, and H. Khoramishad, The effect of metallic fiber geometry and multi-walled carbon nanotubes on the mechanical behavior of aluminum fiber-reinforced composite adhesive joints, Proc. Inst. Mech. Eng., Part L: J. Mater.: Design Appl., vol. 235, no. 5, pp. 949–957, 2021. DOI: 10.1177/1464420720981404.
  • V. C. Beber, M. Baumert, O. Klapp and C. Nagel, Multiaxial elastic, yield and failure behaviour of bonded joints using a hot-curing epoxy film adhesive: analytical and experimental investigation, J. Adhes., vol. 98, no. 5, pp. 526–552, 2022. DOI: 10.1080/00218464.2020.1850285.
  • D.-J. Kwon, I.-J. Kwon, J. Kong and S.Y. Nam, Investigation of impediment factors in commercialization of reinforced adhesives, Polym. Test., vol. 93, pp. 106995, 2021. DOI: 10.1016/j.polymertesting.2020.106995.
  • A.N. Giv, M.R. Ayatollahi, S.H. Ghaffari and L.F.M. da Silva, Effect of reinforcements at different scales on mechanical properties of epoxy adhesives and adhesive joints: a review, J. Adhes., vol. 94, no. 13, pp. 1082–1121, 2018. DOI: 10.1080/00218464.2018.1452736.
  • R. Rahman, and S. Z. F. S. Putra, Tensile properties of natural and synthetic fiber-reinforced polymer composites, Mech. Phys. Test. Biocompos., Fibre-Reinf. Compos. Hybrid Compos., pp. 81–102, 2019, Sawston, England: Woodhead Publishing. DOI: 10.1016/B978-0-08-102292-4.00005_9
  • N. N. Hussain, S.P. Regalla, Y.V.D. Rao, T. Dirgantara, L. Gunawan and A. Jusuf, Drop-weight impact testing for the study of energy absorption in automobile crash boxes made of composite material, Proc. Inst. Mech. Eng., Part L: J. Mater.: Design Appl., vol. 235, no. 1, pp. 114–130, 2021. DOI: 10.1177/1464420720952813.
  • J. Da Costa, A. Akhavan-Safar, E.A.S. Marques, R. J. C. Carbas and L. F. M. da Silva, Cyclic ageing of adhesive materials, J. Adhes., vol. 98, no. 10, pp. 1341–1357, 2022. DOI: 10.1080/00218464.2021.1895772.
  • F. Delzendehrooy, R. Beygi, A. Akhavan-Safar and L.F.M. da Silva, Fracture energy assessment of adhesives part II: is GIIc an adhesive material property?(a neural network analysis), J. Adv. Join. Process., vol. 3, pp. 100049, 2021. DOI: 10.1016/j.jajp.2021.100049.
  • X. He, Q. Li, and V. L. Popov, Strength of adhesive contact between a rough fibrillar structure and an elastic body: influence of fibrillar stiffness, J. Adhes., vol. 98, no. 12, pp. 1820–1833, 2022. DOI: 10.1080/00218464.2021.1939017.
  • S. Kunz-Douglass, P. W. Beaumont, and M. Ashby, A model for the toughness of epoxy-rubber particulate composites, J. Mater. Sci., vol. 15, no. 5, pp. 1109–1123, 1980. DOI: 10.1007/BF00551799.
  • F. Lange, and K. Radford, Fracture energy of an epoxy composite system, J. Mater. Sci., vol. 6, no. 9, pp. 1197–1203, 1971. DOI: 10.1007/BF00550091.
  • U. Khashaba, R. Othman, and I. Najjar, Experimental analysis of composite scarf adhesive joints modified with multiwalled carbon nanotubes under bending and thermomechanical impact loads, Proc. Inst. Mech. Eng., Part L: J. Mater.: Design Appl., vol. 234, no. 1, pp. 48–64, 2020. DOI: 10.1177/1464420719873122.
  • V. K. Thakur, M. K. Thakur, and R. K. Gupta, Raw natural fiber–based polymer composites, Int. J. Polym. Anal. Charact., vol. 19, no. 3, pp. 256–271, 2014. DOI: 10.1080/1023666X.2014.880016.
  • S. V. Joshi, L.T Drzal, A.K. Mohanty and S. Arora, Are natural fiber composites environmentally superior to glass fiber reinforced composites?, Compos. Part A: Appl. Sci. Manuf., vol. 35, no. 3, pp. 371–376, 2004. DOI: 10.1016/j.compositesa.2003.09.016.
  • T. Alsaeed, B. Yousif, and H. Ku, The potential of using date palm fibres as reinforcement for polymeric composites, Mater. Design., vol. 43, pp. 177–184, 2013. DOI: 10.1016/j.matdes.2012.06.061.
  • J. Biagiotti, D. Puglia, and J. M. Kenny, A review on natural fibre-based composites-part I: structure, processing and properties of vegetable fibres, J. Nat. Fibers., vol. 1, no. 2, pp. 37–68, 2004. DOI: 10.1300/J395v01n02_04.
  • P. Mayer, A. Dmitruk, N. Leja and E. Pakiet, Pull-off strength of fibre-reinforced composite polymer coatings on steel substrate, J. Adhes., vol. 98, no. 3, pp. 286–304, 2022. DOI: 10.1080/00218464.2020.1831478.
  • K. Tserpes, A. Barroso-Caro, P. A. Carraro, V. C. Beber, I. Floros, W. Gamon, M. Kozłowski, F. Santandrea, M. Shahverdi, D. Skejić, C. Bedon and V. Rajčić, A review on failure theories and simulation models for adhesive joints, J. Adhes., vol. 98, no. 12, pp. 1855–1915, 2022. DOI: 10.1080/00218464.2021.1941903.
  • A. Akhavan-Safar, A.Q. Barbosa, L. F. M. da Silva and M. R. Ayatollahi, Micro failure analysis of adhesively bonded joints enhanced with natural cork particles: Impact of overlap length and particles volume fraction, Frat. ed Integrità Strutt., vol. 12, no. 46, pp. 266–274, 2018. DOI: 10.3221/IGF-ESIS.46.24.
  • L. Y. Mwaikambo, and E. T. Bisanda, The performance of cotton–kapok fabric–polyester composites, Polym. Test., vol. 18, no. 3, pp. 181–198, 1999. DOI: 10.1016/S0142-9418(98)00017-8.
  • A. Alawar, M. Hamid, and A. Kaabi, The effect of different chemical treatment processes on date palm fiber surrounding the stems of date palm tree, Compos.-Part B Eng., vol. 40, no. 7, pp. 601–606, 2009. DOI: 10.1016/j.compositesb.2009.04.018.
  • F. M. Al-Oqla, O.Y. Alothman, M. Jawaid, S. M. Sapuan and M. H. Es-Saheb, Processing and properties of date palm fibers and its composites, in Biomass and bioenergy. Midtown Manhattan, New York City, USA: Springer, 2014, p. 1–25.
  • A. Akhavan-Safar, F. Delzendehrooy, M. Ayatollahi and L. F. M. da Silva, Influence of date palm tree fibers on the tensile fracture energy of an epoxy-based adhesive, J. Nat. Fibers., vol. 19, no. 16, pp. 14379–14395, 2022. DOI: 10.1080/15440478.2022.2064393.
  • N. Saba, O. Y. Alothman. Z. Almutairi, M. Jawaid and W. Ghori, Date palm reinforced epoxy composites: tensile, impact and morphological properties, J. Mater. Res. Technol., vol. 8, no. 5, pp. 3959–3969, 2019. DOI: 10.1016/j.jmrt.2019.07.004.
  • H. Khakpour, M.R. Ayatollahi, A. Akhavan-Safar and L.F.M. da Silva, Mechanical properties of structural adhesives enhanced with natural date palm tree fibers: effects of length, density and fiber type, Compos. Struct., vol. 237, pp. 111950, 2020. DOI: 10.1016/j.compstruct.2020.111950.
  • Y.-X. Xu, and J.-Y. Juang, Measurement of nonlinear Poisson’s ratio of thermoplastic polyurethanes under cyclic softening using 2D digital image correlation, Polymers, vol. 13, no. 9, pp. 1498, 2021. DOI: 10.3390/polym13091498.
  • P. D. Harvey, Engineering Properties of Steel. ASM International, 1982, Cleveland, Ohio, USA.
  • S. Taj, M. A. Munawar, and S. Khan, Natural fiber-reinforced polymer composites, Proceedings-Pakistan Academy of Sciences., vol. 44, no. 2, pp. 129, 2007.
  • S. Tripathy, J. Dehury, and D. Mishra, A study on the effect of surface treatment on the physical and mechanical properties of date-palm stem liber embedded epoxy composites, IOP Conf. Ser: Mater. Sci. Eng., vol. 115, pp. 012036, 2016. DOI: 10.1088/1757-899X/115/1/012036.
  • L. Goglio, and M. Rossetto, Impact rupture of structural adhesive joints under different stress combinations, Int. J. Impact Eng., vol. 35, no. 7, pp. 635–643, 2008. DOI: 10.1016/j.ijimpeng.2007.02.006.
  • T. Masri, H. Ounis, L. Sedira, A. Kaci and A. Benchabane, Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes, Constr. Build. Mater., vol. 164, pp. 410–418, 2018. DOI: 10.1016/j.conbuildmat.2017.12.197.
  • J. Dehury, J. R. Mohanty, S. Nayak, P. Samal, S. K. Khuntia, C. Malla, S. D. Mohanty and J. Mohapatra, Comprehensive characterization of date palm petiole fiber reinforced epoxy composites: Effect of fiber treatment and loading on various properties, J. Nat. Fibers., vol. 19, no. 14, pp. 9457–9470, 2022. DOI: 10.1080/15440478.2021.1982834.
  • B.-H. Lee, H.-J. Kim, and W.-R. Yu, Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties, Fibers Polym., vol. 10, no. 1, pp. 83–90, 2009. DOI: 10.1007/s12221-009-0083-z.
  • S. Awad, Y. Zhou, E. Katsou, Y. Li and M. Fan, A critical review on date palm tree (Phoenix dactylifera L.) fibres and their uses in bio-composites, Waste Biomass Valor., vol. 12, no. 6, pp. 2853–2887, 2021. DOI: 10.1007/s12649-020-01105-2.
  • A. P. Vassilopoulos, and T. Keller, Fatigue of Fiber-Reinforced Composites. London, England, United Kingdom: Springer Science & Business Media, 2011.
  • A. P. Vassilopoulos, The history of fiber-reinforced polymer composite laminate fatigue, Int. J. Fatigue., vol. 134, pp. 105512, 2020. DOI: 10.1016/j.ijfatigue.2020.105512.
  • D. Ray, B. Sarkar, and A. Rana, Fracture behavior of vinylester resin matrix composites reinforced with alkali‐treated jute fibers, J. Appl. Polym. Sci., vol. 85, no. 12, pp. 2588–2593, 2002. DOI: 10.1002/app.10933.
  • V. Jaksic, C. Kennedy, D. Grogan, S. Leen and C. Brádaigh, Influence of composite fatigue properties on marine tidal turbine blade design. In Durability of Composites in a Marine Environment 2. Midtown Manhattan, New York City, USA: Springer, 2018, p. 195–223

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.