170
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Large deflections of magneto-electro-elastic cylindrical shells reinforced with functionally graded carbon nanotubes

, , , &
Pages 2494-2508 | Received 16 Oct 2022, Accepted 11 Dec 2022, Published online: 06 Jan 2023

References

  • A.E. Alshorbagy, M.A. Eltaher, and F.F. Mahmoud, Free vibration characteristics of a functionally graded beam by finite element method, Appl. Math. Modell., vol. 35, no. 1, pp. 412–425, 2011. DOI: 10.1016/j.apm.2010.07.006.
  • M.A. Eltaher, S.A. Emam, and F.F. Mahmoud, Free vibration analysis of functionally graded size-dependent nanobeams, Appl. Math. Comput., vol. 218, no. 14, pp. 7406–7420, 2012. DOI: 10.1016/j.amc.2011.12.090.
  • F.F. Mahmoud, M.A. Eltaher, A.E. Alshorbagy, and E.I. Meletis, Static analysis of nanobeams including surface effects by nonlocal finite element, J. Mech. Sci. Technol., vol. 26, no. 11, pp. 3555–3563, 2012. DOI: 10.1007/s12206-012-0871-z.
  • M.A. Eltaher, S.A. Emam, and F.F. Mahmoud, Static and stability analysis of nonlocal functionally graded nanobeams, Compos. Struct., vol. 96, pp. 82–88, 2013. DOI: 10.1016/j.compstruct.2012.09.030.
  • M.A. Eltaher, A.E. Alshorbagy, and F.F. Mahmoud, Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams, Compos. Struct., vol. 99, no. 5, pp. 193–201, 2013. DOI: 10.1016/j.compstruct.2012.11.039.
  • J. Van den Boomgaard and R. Born, A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn) Fe2O4, J. Mater. Sci., vol. 13, pp. 1538–1548, 1978.
  • M. Vinyas, K.K. Sunny, D. Harursampath, T. Nguyen-Thoi, and M.A.R. Loja, Influence of interphase on the multi-physics coupled frequency of three-phase smart magneto-electro-elastic composite plates, Compos. Struct., vol. 226, pp. 111254, 2019. DOI: 10.1016/j.compstruct.2019.111254.
  • M. Vinyas, Vibration control of skew magneto-electro-elastic plates using active constrained layer damping, Compos. Struct., vol. 208, pp. 600–617, 2019. DOI: 10.1016/j.compstruct.2018.10.046.
  • D. Ashwini, R. Bishakha, D. Suvarna, and M. Vikas, Magnetic force microscopic analysis and the magnetoelectric sensor of PLZT-spinel ferrite composite films, J. Magn. Magn. Mater., vol. 489, pp. 165373, 2019.
  • M. Li, L. Zhou, and C. Liu, The multi-physical cell-based smoothed finite element method for analyzing transient behavior of functionally grade magneto-electro-elastic thin-walled structures under thermal environment, Thin-Walled Struct., vol. 155, pp. 106876, 2020. DOI: 10.1016/j.tws.2020.106876.
  • L. Hu and L. Zheng, Modeling of novel nanoscale mass sensor made of smart FG magneto-electro-elastic nanofilm integrated with graphene layers sciencedirect, Thin-Walled Struct., vol. 151, pp. 106749, 2020.
  • E. Pan and F. Han, Exact solution for functionally graded and layered magneto-electro-elastic plates, Int. J. Eng. Sci., vol. 43, no. 34, pp. 321–339, 2005. DOI: 10.1016/j.ijengsci.2004.09.006.
  • F. Ramirez, P.R. Heyliger, and E. Pan, Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates, Mech. Compos. Mater. Struct., vol. 13, no. 3, pp. 249–266, 2006. DOI: 10.1080/15376490600582750.
  • D.J. Huang, H.J. Ding, and W.Q. Chen, Analytical solution for functionally graded magneto-electro-elastic plane beams, Int. J. Eng. Sci., vol. 45, no. 28, pp. 467–485, 2007. DOI: 10.1016/j.ijengsci.2007.03.005.
  • R.K. Bhangale and N. Ganesan, Static analysis of simply supported functionally graded and layered magneto-electro-elastic plate, Int. J. Solids Struct., vol. 43, no. 10, pp. 3230–3253, 2006. DOI: 10.1016/j.ijsolstr.2005.05.030.
  • A. Milazzo, A one-dimensional model for dynamic analysis of generally layered magneto-electro-elastic beams, J. Sound Vib., vol. 332, no. 2, pp. 465–483, 2013. DOI: 10.1016/j.jsv.2012.09.004.
  • A. Milazzo, Refined equivalent single layer formulations and finite elements for smart laminates free vibrations, Compos. B, vol. 61, pp. 238–253, 2014. DOI: 10.1016/j.compositesb.2014.01.055.
  • W.J. Feng and R. Su, Dynamic internal crack problem of a functionally graded magneto-electro-elastic strip, Int. J. Solids Struct., vol. 43, no. 17, pp. 5196–5216, 2006. DOI: 10.1016/j.ijsolstr.2005.07.050.
  • A. Shooshtari and S. Razavi, Free vibration analysis of a magneto-electro-elastic doubly-curved shell resting on a pasternak-type elastic foundation, Smart Mater. Struct., vol. 23, no. 10, pp. 105003, 2014. DOI: 10.1088/0964-1726/23/10/105003.
  • A. Shooshtari and S. Razavi, Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation, Compos. B, vol. 78, pp. 95–108, 2015. DOI: 10.1016/j.compositesb.2015.03.070.
  • F. Ebrahimi, A. Jafari, and M.R. Barati, Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations, Thin-Walled Struct., vol. 119, pp. 33–46, 2017. DOI: 10.1016/j.tws.2017.04.002.
  • R. Garcia Lage, C.M. Mota Soares, C.A. Mota Soares, and J.N. Reddy, Layerwise partial mixed finite element analysis of magneto-electro-elastic plates, Comput. Struct., vol. 82, no. 1719, pp. 1293–1301, 2004. DOI: 10.1016/j.compstruc.2004.03.026.
  • C.P. Wu and Y.H. Tsai, Dynamic responses of functionally graded magneto-electro-elastic shells with closed-circuit surface conditions using the method of multiple scales, Eur. J. Mech. A/Solids, vol. 29, no. 2, pp. 166–181, 2010. DOI: 10.1016/j.euromechsol.2009.09.004.
  • P.F. Hou and A.Y.T. Leung, The transient responses of magneto-electro-elastic hollow cylinders, Smart Mater. Struct., vol. 13, no. 4, pp. 762–776, 2004. DOI: 10.1088/0964-1726/13/4/014.
  • X.Y. Li, H.J. Ding, and W.Q. Chen, Three-dimensional analytical solution for functionally graded magneto-celectro-elastic circular plates subjected to uniform load, Compos. Struct., vol. 83, no. 4, pp. 381–390, 2008. DOI: 10.1016/j.compstruct.2007.05.006.
  • J. Sladek, V. Sladek, S. Krahulec, and E. Pan, Analyses of functionally graded plates with a magnetoelectroelastic layer, Smart Mater. Struct., vol. 22, no. 3, pp. 035003, 2013. DOI: 10.1088/0964-1726/22/3/035003.
  • S.Q. Zhang, Y.F. Zhao, X. Wang, M. Chen, and R. Schmidt, Static and dynamic analysis of functionally graded magneto-electro-elastic plates and shells, Compos. Struct., vol. 281, pp. 114950, 2022. DOI: 10.1016/j.compstruct.2021.114950.
  • J.M.S. Moita, C.M.M. Soares, and C.A.M. Soares, Analyses of magneto-electro-elastic plates using a higher order finite element model, Compos. Struct., vol. 91, no. 4, pp. 421–426, 2009.
  • B. Wu, J. Yu, and C. He, Wave propagation in non-homogeneous magneto-electro-elastic plates, J. Sound Vib., vol. 317, no. 1–2, pp. 250–264, 2008.
  • J. Sladek, V. Sladek, S. Krahulec, and E. Pan, The mlpg analyses of large deflections of magnetoelectroelastic plates, Eng. Anal. Boundary Elem., vol. 37, no. 4, pp. 673–682, 2013. DOI: 10.1016/j.enganabound.2013.02.001.
  • S. Razavi and A. Shooshtari, Nonlinear free vibration of magneto-electro-elastic rectangular plates, Compos. Struct., vol. 119, pp. 377–384, 2015. DOI: 10.1016/j.compstruct.2014.08.034.
  • A. Shooshtari and S. Razavi, Large amplitude free vibration of symmetrically laminated magneto-electro-elastic rectangular plates on pasternak type foundation, Mech. Res. Commun., vol. 69, pp. 103–113, 2015. DOI: 10.1016/j.mechrescom.2015.06.011.
  • S.C. Kattimani and M.C. Ray, A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading, Int. J. Mech. Sci., vol. 62, no. 5, pp. 519–535, 2015.
  • A. Alaimo, I. Benedetti, and A. Milazzo, A finite element formulation for large deflection of multilayered magneto-electro-elastic plates, Compos. Struct., vol. 107, pp. 643–653, 2014. DOI: 10.1016/j.compstruct.2013.08.032.
  • S. Shabanpour, S. Razavi, and A. Shooshtari, Nonlinear vibration analysis of laminated magneto-electro-elastic rectangular plate based on third-order shear deformation theory, Iran J. Sci. Technol. Trans. Mech. Eng., vol. 43, no. S1, pp. 211–223, 2019. DOI: 10.1007/s40997-018-0150-4.
  • X.L. Zhang, Q. Xu, X. Zhao, Y.H. Lia, and J. Yang, Nonlinear analyses of magneto-electro-elastic laminated beams in thermal environments, Compos. Struct., vol. 234, pp. 111524, 2020. DOI: 10.1016/j.compstruct.2019.111524.
  • M.N. Rao, R. Schmidt, and K.U. Schroeder, Geometrically nonlinear static FE-simulation of multilayered magneto-electro-elastic composite structures, Compos. Struct., vol. 127, pp. 120–131, 2015. DOI: 10.1016/j.compstruct.2015.03.002.
  • K.M. Liew, Z.X. Lei, and L.W. Zhang, Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review, Compos. Struct., vol. 120, pp. 90–97, 2015. DOI: 10.1016/j.compstruct.2014.09.041.
  • M. Vinyas, A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods, Compos. Part B., vol. 158, pp. 286–301, 2019. DOI: 10.1016/j.compositesb.2018.09.086.
  • M. Vinyas, D. Harursampath, and S.C. Kattimani, On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods, Defence Technol., vol. 17, no. 1, pp. 287–303, 2021. DOI: 10.1016/j.dt.2020.03.012.
  • M. Vinyas, On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT, Compos. Struct., vol. 240, pp. 112044, 2020. DOI: 10.1016/j.compstruct.2020.112044.
  • M. Vinyas, Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study, Mater. Res. Express., vol. 6, no. 12, pp. 125707, 2020. DOI: 10.1088/2053-1591/ab6649.
  • M. Vinyas and D. Harursampath, Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM, Eng. Comput., 2020. DOI:10.1007/s00366-020-01098-5.
  • M. Vinyas, Nonlinear deflection of carbon nanotube reinforced multiphase magneto-electro-elastic plates in thermal environment considering pyrocoupling effects, Math. Methods Appl. Sci., pp. 1–21, 2020. DOI:10.1002/mma.6858.
  • R. Rostami and M. Mohammadimehr, Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers, Eng. Comput., vol. 38, no. 1, pp. 87–100, 2022. DOI: 10.1007/s00366-020-01052-5.
  • M. Mohammadimehr, S.V. Okhravi, and S.M. AkhavanAlavi, Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of cnts with considering open and closed circuits boundary conditions based on FSDT, J. Vib. Control., vol. 24, no. 8, pp. 1551–1569, 2018. DOI: 10.1177/1077546316664022.
  • Y. Ni, S. Zhu, J. Sun, Z. Tong, Z. Zhou, X. Xu and C. W. Lim, An accurate model for free vibration of porous magneto-electro-thermo-elastic functionally graded cylindrical shells subjected to multi-field coupled loadings, J. Intell. Mater. Syst. Struct., vol. 32, no. 17, pp. 2006–2023, 2021. DOI: 10.1177/1045389X20986894.
  • M. Vinyas and D. Harursampath, Nonlinear vibrations of magneto-electro-elastic doubly curved shells rein forced with carbon nanotubes, Compos. Struct., vol. 253, pp. 112749, 2020. DOI: 10.1016/j.compstruct.2020.112749.
  • M. Vinyas, Nonlinear pyrocoupled deflection of viscoelastic sandwich shell with CNT reinforced magneto-electro-elastic facing subjected to electromagnetic loads in thermal environment, Eur. Phys. J. Plus, vol. 136, no. 796, pp. 2–30, 2021.
  • M. Vinyas and D. Harursampath, Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading, Mech. Adv. Mater. Struct., vol. 29, no.7, pp.1047–1071, 2020. DOI:10.1080/15376494.2020.1805059.
  • M. Vinyas, Porosity effect on the nonlinear deflection of functionally graded magneto-electro-elastic smart shells under combined loading, Mech. Adv. Mater. Struct., vol. 4, pp. 1–27, 2021.
  • S.Q. Zhang and R. Schmidt, Static and dynamic FE analysis of piezoelectric integrated thin-walled composite structures with large rotations, Compos. Struct., vol. 112, no. 1, pp. 345–357, 2014. DOI: 10.1016/j.compstruct.2014.02.029.
  • I. Kreja and R. Schmidt, Large rotations in first-order shear deformation FE analysis of laminated shells, Int. J. Non. Linear Mech., vol. 41, no. 1, pp. 101–123, 2006. DOI: 10.1016/j.ijnonlinmec.2005.06.009.
  • S.Q. Zhang, Nonlinear Analysis of Thin-Walled Smart Structures. Springer Tracts in Mechanical Engineering, 2021. DOI:10.1007/978-1-4614-6585-0_11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.