97
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Hyaluronidase inhibitor sHA2.75 alleviates ischemia-reperfusion-induced acute kidney injury

, &
Pages 248-261 | Received 12 May 2023, Accepted 26 Nov 2023, Published online: 25 Mar 2024

References

  • Makris K, Spanou L. Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin Biochem Rev. 2016;37(2):85–98.
  • Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756–66. doi: 10.1016/S0140-6736(11)61454-2
  • Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394(10212):1949–1964. doi: 10.1016/S0140-6736(19)32563-2
  • Al-Kuraishy HM, Al-Gareeb AI. Acute kidney injury and COVID-19. Egypt J Intern Med. 2021;33(1):34. doi: 10.1186/s43162-021-00064-x
  • Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200. doi: 10.1038/nrneph.2011.16
  • Verma SK, Molitoris BA. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol. 2015;35(1):96–107. doi: 10.1016/j.semnephrol.2015.01.010
  • Nagy N, Sunkari VG, Kaber G, et al. Hyaluronan levels are increased systemically in human type 2 but not type 1 diabetes independently of glycemic control. Matrix Biol. 2019;80:46–58. doi: 10.1016/j.matbio.2018.09.003
  • Graça MFP, Miguel SP, Cabral CSD, et al. Hyaluronic acid-based wound dressings: a review. Carbohydr Polym. 2020;241:116364. doi: 10.1016/j.carbpol.2020.116364
  • Akin D, Ozmen S, Yilmaz ME. Hyaluronic acid as a new biomarker to differentiate acute kidney injury from chronic kidney disease. Iran J Kidney Dis. 2017;11(6):409–413.
  • Zhou X, Chen Q, Guo C, et al. CD44 receptor-targeted and reactive oxygen species-responsive H(2)S donor micelles based on hyaluronic acid for the therapy of renal ischemia/reperfusion injury. ACS Omega. 2022;7(46):42339–42346. doi: 10.1021/acsomega.2c05407
  • Huang ZW, Shi Y, Zhai YY, et al. Hyaluronic acid coated bilirubin nanoparticles attenuate ischemia reperfusion-induced acute kidney injury. J Control Release. 2021;334:275–289. doi: 10.1016/j.jconrel.2021.04.033
  • Wang CT, Lin YT, Chiang BL, et al. High molecular weight hyaluronic acid down-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast-like synoviocytes from patients with early osteoarthritis. Osteoarthritis Cartilage. 2006;14(12):1237–47. doi: 10.1016/j.joca.2006.05.009
  • Inokoshi Y, Tanino Y, Wang X, et al. Clinical significance of serum hyaluronan in chronic fibrotic interstitial pneumonia. Respirology. 2013;18(8):1236–43. doi: 10.1111/resp.12144
  • Colombaro V, Jadot I, Declèves AE, et al. Lack of hyaluronidases exacerbates renal post-ischemic injury, inflammation, and fibrosis. Kidney Int. 2015;88(1):61–71. doi: 10.1038/ki.2015.53
  • Kaul A, Short WD, Wang X, et al. Hyaluronidases in human diseases. Int J Mol Sci. 2021;22(6):3204. doi: 10.3390/ijms22063204
  • Vlahu CA, Lemkes BA, Struijk DG, et al. Damage of the endothelial glycocalyx in dialysis patients. J Am Soc Nephrol. 2012;23(11):1900–8. doi: 10.1681/ASN.2011121181
  • Dogne S, Flamion B. Endothelial glycocalyx impairment in disease: focus on hyaluronan shedding. Am J Pathol. 2020;190(4):768–780. doi: 10.1016/j.ajpath.2019.11.016
  • Harada H, Takahashi M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J Biol Chem. 2007;282(8):5597–607. doi: 10.1074/jbc.M608358200
  • Midgley AC, Woods EL, Jenkins RH, et al. Hyaluronidase-2 regulates RhoA signaling, myofibroblast contractility, and other key profibrotic myofibroblast functions. Am J Pathol. 2020;190(6):1236–1255. doi: 10.1016/j.ajpath.2020.02.012
  • Anderson RA, Feathergill K, Diao X, et al. Evaluation of poly(styrene-4-sulfonate) as a preventive agent for conception and sexually transmitted diseases. J Androl. 2000;21(6):862–75. doi: 10.1002/j.1939-4640.2000.tb03417.x
  • Anderson RA, Feathergill KA, Diao XH, et al. Preclinical evaluation of sodium cellulose sulfate (Ushercell) as a contraceptive antimicrobial agent. J Androl. 2002;23(3):426–38. doi: 10.1002/j.1939-4640.2002.tb02250.x
  • Balazs EA, Hogberg B, Laurent TC. The biological activity of hyaluron sulfuric acid. Acta Physiol Scand. 1951;23(2–3):168–78. doi: 10.1111/j.1748-1716.1951.tb00806.x
  • Furuya T, Yamagata S, Shimoyama Y, et al. Biochemical characterization of glycyrrhizin as an effective inhibitor for hyaluronidases from bovine testis. Biol Pharm Bull. 1997;20(9):973–7. doi: 10.1248/bpb.20.973
  • Joyce CL, Mack SR, Anderson RA, et al. Effect of hyaluronidase, beta-glucuronidase and beta-N-acetylglucosaminidase inhibitors on sperm penetration of the mouse oocyte. Biol Reprod. 1986;35(2):336–346. doi: 10.1095/biolreprod35.2.336
  • Mio K, Stern R. Inhibitors of the hyaluronidases. Matrix Biol. 2002;21(1):31–7. doi: 10.1016/S0945-053X(01)00185-8
  • Perreault S, Zaneveld LJ, Rogers BJ. Inhibition of fertilization in the hamster by sodium aurothiomalate, a hyaluronidase inhibitor. J Reprod Fertil. 1980;60(2):461–7. doi: 10.1530/jrf.0.0600461
  • Toida T, Ogita Y, Suzuki A, et al. Inhibition of hyaluronidase by fully O-sulfonated glycosaminoglycans. Arch Biochem Biophys. 1999;370(2):176–82. doi: 10.1006/abbi.1999.1395
  • Wolf RA, Glogar D, Chaung LY, et al. Heparin inhibits bovine testicular hyaluronidase activity in myocardium of dogs with coronary artery occlusion. Am J Cardiol. 1984;53(7):941–4. doi: 10.1016/0002-9149(84)90529-0
  • Yingprasertchai S, Bunyasrisawat S, Ratanabanangkoon K. Hyaluronidase inhibitors (sodium cromoglycate and sodium auro-thiomalate) reduce the local tissue damage and prolong the survival time of mice injected with Naja kaouthia and calloselasma rhodostoma venoms. Toxicon. 2003;42(6):635–46. doi: 10.1016/j.toxicon.2003.09.001
  • Yuan YY, Shi QX, Srivastava PN. Inhibition of rabbit sperm acrosomal enzymes by gossypol. Mol Reprod Dev. 1995;40(2):228–32. doi: 10.1002/mrd.1080400212
  • Zaneveld LJ, Waller DP, Anderson RA, et al. Efficacy and safety of a new vaginal contraceptive antimicrobial formulation containing high molecular weight poly(sodium 4-styrenesulfonate). Biol Reprod. 2002;66(4):886–894. doi: 10.1095/biolreprod66.4.886
  • Csoka AB, Frost GI, Wong T, et al. Purification and microsequencing of hyaluronidase isozymes from human urine. FEBS Lett. 1997;417(3):307–310. doi: 10.1016/S0014-5793(97)01309-4
  • Frost GI, Csoka AB, Wong T, et al. Purification, cloning, and expression of human plasma hyaluronidase. Biochem Biophys Res Commun. 1997;236(1):10–15. doi: 10.1006/bbrc.1997.6773
  • Lokeshwar VB, Young MJ, Goudarzi G, et al. Identification of bladder tumor-derived hyaluronidase: its similarity to HYAL1. Cancer Res. 1999;59(17):4464–70.
  • Isoyama T, Thwaites D, Selzer MG, et al. Differential selectivity of hyaluronidase inhibitors toward acidic and basic hyaluronidases. Glycobiology. 2006;16(1):11–21. doi: 10.1093/glycob/cwj036
  • Goligorsky MS, Brodsky SV, Noiri E. Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int. 2002;61(3):855–61. doi: 10.1046/j.1523-1755.2002.00233.x
  • Al-Naimi MS, Rasheed HA, Hussien NR, et al. Nephrotoxicity: role and significance of renal biomarkers in the early detection of acute renal injury. J Adv Pharm Technol Res. 2019;10(3):95–99. doi: 10.4103/japtr.JAPTR_336_18
  • Gowda S, Desai PB, Kulkarni SS, et al. Markers of renal function tests. N Am J Med Sci. 2010;2(4):170–3.
  • Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease. Scand J Clin Lab Invest Suppl. 2008;241(sup241):89–94. doi: 10.1080/00365510802150158
  • Carr MW, Roth SJ, Luther E, et al. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A. 1994;91(9):3652–6. doi: 10.1073/pnas.91.9.3652
  • Heinrich PC, Behrmann I, Haan S, et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374(Pt 1):1–20. doi: 10.1042/bj20030407
  • Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104(4):487–501. doi: 10.1016/S0092-8674(01)00237-9
  • Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–630. doi: 10.1038/nrm3434
  • Munshi R, Johnson A, Siew ED, et al. MCP-1 gene activation marks acute kidney injury. J Am Soc Nephrol. 2011;22(1):165–75. doi: 10.1681/ASN.2010060641
  • Su H, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol. 2017;8:405. doi: 10.3389/fimmu.2017.00405
  • Vielhauer V, Mayadas TN. Functions of TNF and its receptors in renal disease: distinct roles in inflammatory tissue injury and immune regulation. Semin Nephrol. 2007;27(3):286–308. doi: 10.1016/j.semnephrol.2007.02.004
  • Rasheed HA, Al-Naimi MS, Hussien NR, et al. New insight into the effect of lycopene on the oxidative stress in acute kidney injury. Int J Crit Illn Inj Sci. 2020;10(Suppl 1):11–16. doi: 10.4103/IJCIIS.IJCIIS_113_19
  • Al-Kuraishy HM, Al-Gareeb AI, Al-Nami MS. Vinpocetine improves oxidative stress and pro-inflammatory mediators in acute kidney injury. Int J Prev Med. 2019;10(1):142. doi: 10.4103/ijpvm.IJPVM_5_19
  • Al-Kuraishy HM, Al-Gareeb AI, Al-Naimi MS. Renoprotective effect of irbesartan in a rat model of gentamicin-induced nephrotoxicity: role of oxidative stress. J Lab Physicians. 2019;11(3):200–205. doi: 10.4103/JLP.JLP_136_18
  • Neugarten J, Golestaneh L. Sex differences in acute kidney injury. Semin Nephrol. 2022;42(2):208–218. doi: 10.1016/j.semnephrol.2022.04.010
  • Schiffl H. Gender differences in the susceptibility of hospital-acquired acute kidney injury: more questions than answers. Int Urol Nephrol. 2020;52(10):1911–1914. doi: 10.1007/s11255-020-02526-7
  • Chiba T, Skrypnyk NI, Skvarca LB, et al. Retinoic acid signaling coordinates macrophage-dependent injury and repair after AKI. J Am Soc Nephrol. 2016;27(2):495–508. doi: 10.1681/ASN.2014111108
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108. doi: 10.1038/nprot.2008.73
  • Singh AP, Junemann A, Muthuraman A, et al. Animal models of acute renal failure. Pharmacol Rep. 2012;64(1):31–44. doi: 10.1016/S1734-1140(12)70728-4
  • Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–818. doi: 10.1001/jama.294.7.813
  • Lei L, Li LP, Zeng Z, et al. Value of urinary KIM-1 and NGAL combined with serum cys C for predicting acute kidney injury secondary to decompensated cirrhosis. Sci Rep. 2018;8(1):7962. doi: 10.1038/s41598-018-26226-6
  • Angeli P, Ginès P, Wong F, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the international club of ascites. J Hepatol. 2015;62(4):968–74. doi: 10.1016/j.jhep.2014.12.029
  • Yang L, Brooks CR, Xiao S, et al. KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest. 2015;125(4):1620–1636. doi: 10.1172/JCI75417
  • Barreto R, Elia C, Solà E, et al. Urinary neutrophil gelatinase-associated lipocalin predicts kidney outcome and death in patients with cirrhosis and bacterial infections. J Hepatol. 2014;61(1):35–42. doi: 10.1016/j.jhep.2014.02.023
  • Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121(11):4210–21. doi: 10.1172/JCI45161
  • Rabelink TJ, de Zeeuw D. The glycocalyx–linking albuminuria with renal and cardiovascular disease. Nat Rev Nephrol. 2015;11(11):667–676. doi: 10.1038/nrneph.2015.162
  • Foote CA, Soares RN, Ramirez-Perez FI, et al. Endothelial Glycocalyx. Compr Physiol. 2022;12(4):3781–3811.
  • Zhou S, Guo J, Liao X, et al. rhADAMTS13 reduces oxidative stress by cleaving VWF in ischaemia/reperfusion-induced acute kidney injury. Acta Physiol (Oxf). 2022;234(3):e13778. doi: 10.1111/apha.13778
  • Al-Kuraishy HM, Al-Gareeb AI, Hussien NR. Synergistic effect of berberine and pentoxifylline in attenuation of acute kidney injury. Int J Crit Illn Inj Sci. 2019;9(2):69–74. doi: 10.4103/IJCIIS.IJCIIS_85_18
  • Al-Kuraishy HM, Al-Gareeb AI, Al-Nami MS. Irbesartan attenuates gentamicin-induced nephrotoxicity in rats through modulation of oxidative stress and endogenous antioxidant capacity. Int J Prev Med. 2020;11(3):200–205. doi: 10.4103/JLP.JLP_136_18
  • Alorabi M, Cavalu S, Al-Kuraishy HM, et al. Pentoxifylline and berberine mitigate diclofenac-induced acute nephrotoxicity in male rats via modulation of inflammation and oxidative stress. Biomed Pharmacother. 2022;152:113225. doi: 10.1016/j.biopha.2022.113225
  • Rasheed HA, Al-Kuraishy HM, Al-Gareeb AI. Rosuvastatin attenuates acute nephrotoxicity through modulation of oxidative stress in Sprague Dawley rats. J Pak Med Assoc. 2019;69(Suppl 3): S98–s102. (8).
  • Rouschop KM, Roelofs JJ, Claessen N, et al. Protection against renal ischemia reperfusion injury by CD44 disruption. J Am Soc Nephrol. 2005;16(7):2034–2043. doi: 10.1681/ASN.2005010054
  • Han DS, Erickson C, Hansen KC, et al. Mesenchymal stem cells delivered locally to ischemia-reperfused kidneys via injectable hyaluronic acid hydrogels decrease extracellular matrix remodeling 1 month after injury in male mice. Cells. 2023;12(13):1771. doi: 10.3390/cells12131771
  • Girish KS, Kemparaju K, Nagaraju S, et al. Hyaluronidase inhibitors: a biological and therapeutic perspective. Curr Med Chem. 2009;16(18):2261–88. doi: 10.2174/092986709788453078
  • Duni A, Liakopoulos V, Koutlas V, et al. The endothelial glycocalyx as a target of ischemia and reperfusion injury in kidney transplantation—where have we gone so far? Int J Mol Sci. 2021;22(4):2157. doi: 10.3390/ijms22042157
  • Bongoni AK, Lu B, McRae JL, et al. Complement-mediated damage to the glycocalyx plays a role in renal ischemia-reperfusion injury in mice. Transplant Direct. 2019;5(4):e341. doi: 10.1097/TXD.0000000000000881
  • Soranno DE, Rodell CB, Altmann C, et al. Delivery of interleukin-10 via injectable hydrogels improves renal outcomes and reduces systemic inflammation following ischemic acute kidney injury in mice. Am J Physiol Renal Physiol. 2016;311(2):F362–72. doi: 10.1152/ajprenal.00579.2015
  • Soranno DE, Lu HD, Weber HM, et al. Immunotherapy with injectable hydrogels to treat obstructive nephropathy. J Biomed Mater Res A. 2014;102(7):2173–80. doi: 10.1002/jbm.a.34902

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.