102
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

DNMT1-mediated epigenetic suppression of FBXO32 expression promoting cyclin dependent kinase 9 (CDK9) survival and esophageal cancer cell growth

, , &
Pages 262-278 | Received 16 Jun 2023, Accepted 25 Dec 2023, Published online: 10 Apr 2024

References

  • Uhlenhopp DJ, Then EO, Sunkara T, et al. Epidemiology of esophageal cancer: update in global trends, etiology and risk factors. Clin J Gastroenterol. 2020;13(6):1010–1021. doi: 10.1007/s12328-020-01237-x
  • Wang L, Han H, Wang Z, et al. Targeting the microenvironment in esophageal cancer. Front Cell Dev Biol. 2021;9:684966. doi: 10.3389/fcell.2021.684966
  • Huang FL, Yu SJ. Esophageal cancer: risk factors, genetic association, and treatment. Asian J Surg. 2018;41(3):210–215. doi: 10.1016/j.asjsur.2016.10.005
  • Watanabe M, Otake R, Kozuki R, et al. Recent progress in multidisciplinary treatment for patients with esophageal cancer. Surg Today. 2020;50(1):12–20. doi: 10.1007/s00595-019-01878-7
  • Dulak AM, Stojanov P, Peng S, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45(5):478–86. doi: 10.1038/ng.2591
  • Kaz AM, Grady WM, Stachler MD, et al. Genetic and epigenetic alterations in Barrett’s Esophagus and esophageal adenocarcinoma. Gastroenterol Clin North Am. 2015;44(2):473–89. doi: 10.1016/j.gtc.2015.02.015
  • Junker JP, van Oudenaarden A. Every cell is special: genome-wide studies add a new dimension to single-cell biology. Cell. 2014;157(1):8–11. doi: 10.1016/j.cell.2014.02.010
  • Li X, Francies HE, Secrier M, et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat Commun. 2018;9(1):2983. doi: 10.1038/s41467-018-05190-9
  • Pectasides E, Stachler MD, Derks S, et al. Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma. Cancer Discov. 2018;8(1):37–48. doi: 10.1158/2159-8290.CD-17-0395
  • Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med. 2018;12(4):361–373. doi: 10.1007/s11684-018-0656-6
  • Wang H, DeFina SM, Bajpai M, et al. DNA methylation markers in esophageal cancer: an emerging tool for cancer surveillance and treatment. Am J Cancer Res. 2021;11(11):5644–5658.
  • Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2022;13(12):877–919. doi: 10.1007/s13238-021-00846-7
  • Meng H, Cao Y, Qin J, et al. DNA methylation, its mediators and genome integrity. Int J Biol Sci. 2015;11(5):604–17. doi: 10.7150/ijbs.11218
  • Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. doi: 10.1038/npp.2012.112
  • Chuang LS-H, Ian H-I, Koh T-W, et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science. 1997;277(5334):1996–2000. doi: 10.1126/science.277.5334.1996
  • Leonhardt H, Page AW, Weier H-U, et al. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 1992;71(5):865–873. doi: 10.1016/0092-8674(92)90561-P
  • Liu Y. Multiple domains are involved in the targeting of the mouse DNA methyltransferase to the DNA replication foci. Nucleic Acids Res. 1998;26(4):1038–45. doi: 10.1093/nar/26.4.1038
  • Rhee K, Yu J, Zhao CY, et al. Dnmt1-dependent DNA methylation is essential for photoreceptor terminal differentiation and retinal neuron survival. Cell Death Dis. 2012;3(11):e427–e427. doi: 10.1038/cddis.2012.165
  • Elliott EN, Sheaffer KL, Schug J, et al. Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium. Development. 2015;142(12):2163–2172. doi: 10.1242/dev.117341
  • Zhou Y, Gan F, Hou L, et al. Modulations of DNMT1 and HDAC1 are involved in the OTA-induced cytotoxicity and apoptosis in vitro. Chem Biol Interact. 2017;278:170–178. doi: 10.1016/j.cbi.2017.10.020
  • Chen T, Hevi S, Gay F, et al. Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nature Genet. 2007;39(3):391–396. doi: 10.1038/ng1982
  • Zhao C, Yang Q, Tang R, et al. DNA methyltransferase 1 deficiency improves macrophage motility and wound healing by ameliorating cholesterol accumulation. NPJ Regen Med. 2023;8(1):29. doi: 10.1038/s41536-023-00306-2
  • Teng Y, Yu X, Yuan H, et al. DNMT1 ablation suppresses tumorigenesis by inhibiting the self-renewal of esophageal cancer stem cells. Oncotarget. 2018;9(27):18896–18907. doi: 10.18632/oncotarget.24116
  • Fu Y, Zhang X, Liu X, et al. The DNMT1-PAS1-PH20 axis drives breast cancer growth and metastasis. Sig Transduct Target Ther. 2022;7(1):81. doi: 10.1038/s41392-022-00896-1
  • Ding Y, Zhao H, Niu W, et al. M2 macrophage-derived extracellular vesicles containing MicroRNA-501-3p promote colon cancer progression through the SETD7/DNMT1/SOCS3 axis. Dis Colon Rectum. 2023;66(12):e1234–e1245. doi: 10.1097/DCR.0000000000002986
  • Li Z, Li B, Yu H, et al. DNMT1-mediated epigenetic silencing of TRAF6 promotes prostate cancer tumorigenesis and metastasis by enhancing EZH2 stability. Oncogene. 2022;41(33):3991–4002. doi: 10.1038/s41388-022-02404-9
  • Wu L, Yang Z, Dai G, et al. SOX5 promotes cell growth and migration through modulating the DNMT1/p21 pathway in bladder cancer. ABBS. 2022;54(7):987–998. doi: 10.3724/abbs.2022075
  • Li M. Aberrant DNA methyltransferase 1 expression in clear cell renal cell carcinoma development and progression. Chin J Cancer Res. 2014;26(4):371.
  • Kerdivel G, Amrouche F, Calmejane M-A, et al. DNA hypermethylation driven by DNMT1 and DNMT3A favors tumor immune escape contributing to the aggressiveness of adrenocortical carcinoma. Clin Epigenetics. 2023;15(1):121. doi: 10.1186/s13148-023-01534-5
  • Singh V, Sharma P, Capalash N. DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer. Curr Cancer Drug Targets. 2013;13(4):379–99. doi: 10.2174/15680096113139990077
  • Zeng B, Zhang X, Zhao J, et al. The role of DNMT1/hsa-miR-124-3p/BCAT1 pathway in regulating growth and invasion of esophageal squamous cell carcinoma. BMC Cancer. 2019;19(1):609. doi: 10.1186/s12885-019-5815-x
  • Liu R, Gu J, Jiang P, et al. DNMT1–MicroRNA126 Epigenetic circuit contributes to esophageal squamous cell carcinoma growth via ADAM9–EGFR–AKT signaling. Clinical Cancer Research. 2015;21(4):854–863. doi: 10.1158/1078-0432.CCR-14-1740
  • Morales F, Giordano A. Overview of CDK9 as a target in cancer research. Cell Cycle. 2016;15(4):519–27. doi: 10.1080/15384101.2016.1138186
  • Mandal R, Becker S, Strebhardt K. Targeting CDK9 for anti-cancer therapeutics. Cancers (Basel). 2021;13(9):2181. doi: 10.3390/cancers13092181
  • Karati D, Mahadik KSR, Trivedi P, et al. Molecular insights on selective and specific inhibitors of cyclin dependent kinase 9 enzyme (CDK9) for the purpose of cancer therapy. Anticancer Agents Med Chem. 2023;23(4):383–403. doi: 10.2174/1871520622666220615125826
  • Tong Z, Chatterjee D, Deng D, et al. Antitumor effects of cyclin dependent kinase 9 inhibition in esophageal adenocarcinoma. Oncotarget. 2017;8(17):28696–28710. doi: 10.18632/oncotarget.15645
  • Zeng H, Yang H, Song Y, et al. Transcriptional inhibition by CDK7/9 inhibitor SNS-032 suppresses tumor growth and metastasis in esophageal squamous cell carcinoma. Cell Death Dis. 2021;12(11):1048. doi: 10.1038/s41419-021-04344-w
  • Habel N, El-Hachem N, Soysouvanh F, et al. FBXO32 links ubiquitination to epigenetic reprograming of melanoma cells. Cell Death Differ. 2021;28(6):1837–1848. doi: 10.1038/s41418-020-00710-x
  • Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–8. doi: 10.1126/science.1065874
  • Tan J, Yang X, Zhuang L, et al. Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 2007;21(9):1050–63. doi: 10.1101/gad.1524107
  • Stitt TN, Drujan D, Clarke BA, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14(3):395–403. doi: 10.1016/S1097-2765(04)00211-4
  • Zhou H, Liu Y, Zhu R, et al. FBXO32 suppresses breast cancer tumorigenesis through targeting KLF4 to proteasomal degradation. Oncogene. 2017;36(23):3312–3321. doi: 10.1038/onc.2016.479
  • Mei Z, Zhang D, Hu B, et al. FBXO32 targets c-myc for proteasomal degradation and inhibits c-myc activity. J Biol Chem. 2015;290(26):16202–14. doi: 10.1074/jbc.M115.645978
  • Chou JL, Su H-Y, Chen L-Y, et al. Promoter hypermethylation of FBXO32, a novel TGF-β/SMAD4 target gene and tumor suppressor, is associated with poor prognosis in human ovarian cancer. Lab Invest. 2010;90(3):414–425. doi: 10.1038/labinvest.2009.138
  • Guo W, Zhang M, Guo Y, et al. FBXO32, a new TGF-β/Smad signaling pathway target gene, is epigenetically inactivated in gastric cardia adenocarcinoma. Neoplasma. 2015;62(4):646–57. doi: 10.4149/neo_2015_078
  • Ma L, Tian X, Guo H, et al. Long noncoding RNA H19 derived miR-675 regulates cell proliferation by down-regulating E2F-1 in human pancreatic ductal adenocarcinoma. J Cancer. 2018;9(2):389–399. doi: 10.7150/jca.21347
  • Ehrlich M, Lacey M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics. 2013;5(5):553–68. doi: 10.2217/epi.13.43
  • Veeranki OL, Tong Z, Dokey R, et al. Targeting cyclin-dependent kinase 9 by a novel inhibitor enhances radiosensitization and identifies Axl as a novel downstream target in esophageal adenocarcinoma. Oncotarget. 2019;10(45):4703–4718. doi: 10.18632/oncotarget.27095
  • Colebatch AJ, Dobrovic A, Cooper WA. TERT gene: its function and dysregulation in cancer. J Clin Pathol. 2019;72(4):281–284. doi: 10.1136/jclinpath-2018-205653
  • Shu Y, Zhang H, Li J, et al. LINC00494 promotes ovarian cancer development and progression by modulating NFκB1 and FBXO32. Front. Oncol. 2020;10:541410. doi: 10.3389/fonc.2020.541410
  • Kulis M, Esteller M. DNA methylation and cancer. Adv Genet. 2010;70:27–56.
  • Weisenberger DJ, Lakshminarasimhan R, Liang G. The role of DNA methylation and DNA methyltransferases in cancer. Adv Exp Med Biol. 2022;1389:317–348.
  • Wang Q, Liang N, Yang T, et al. DNMT1-mediated methylation of BEX1 regulates stemness and tumorigenicity in liver cancer. J Hepatol. 2021;75(5):1142–1153. doi: 10.1016/j.jhep.2021.06.025
  • Liu T, Wang J, Sun L, et al. Piwi-interacting RNA-651 promotes cell proliferation and migration and inhibits apoptosis in breast cancer by facilitating DNMT1-mediated PTEN promoter methylation. Cell Cycle. 2021;20(16):1603–1616. doi: 10.1080/15384101.2021.1956090
  • Faktor J, Pjechová M, Hernychová L, et al. Protein ubiquitination research in oncology. Klin Onkol. 2019;32(Suppl 3):56–64. doi: 10.14735/amko20193S56
  • Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014;307(6):E469–84. doi: 10.1152/ajpendo.00204.2014
  • Meshram SN, Paul D, Manne R, et al. FBXO32 activates NF-κB through IκBα degradation in inflammatory and genotoxic stress. Int J Biochem Cell Biol. 2017;92:134–140. doi: 10.1016/j.biocel.2017.09.021
  • Zhang N, Liao Y, Lv W, et al. FBXO32 targets PHPT1 for ubiquitination to regulate the growth of EGFR mutant lung cancer. Cell Oncol. 2022;45(2):293–307. doi: 10.1007/s13402-022-00669-6
  • Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15(6):122. doi: 10.1186/gb4184
  • Chou J, Quigley DA, Robinson TM, et al. Transcription-associated cyclin-dependent kinases as targets and biomarkers for cancer therapy. Cancer Discov. 2020;10(3):351–370. doi: 10.1158/2159-8290.CD-19-0528
  • Yang W, Liu S, Luo Q, et al. Expression of CDK9 in endometrial cancer tissues and its effect on the proliferation of HEC-1B. Open Life Sci. 2021;16(1):1341–1346. doi: 10.1515/biol-2021-0136
  • Qiu Z. Transcription elongation machinery is a Druggable Dependency and potentiates immunotherapy in glioblastoma stem cells. Cancer Discov. 2022;12(2):502–521.
  • Kretz AL, Schaum M, Richter J, et al. CDK9 is a prognostic marker and therapeutic target in pancreatic cancer. Tumour Biol. 2017;39(2):1010428317694304. doi: 10.1177/1010428317694304
  • Nekhai S, Petukhov M, Breuer D. Regulation of CDK9 activity by phosphorylation and dephosphorylation. Biomed Res Int. 2014;2014:964964. doi: 10.1155/2014/964964
  • Cojocaru M, Bouchard A, Cloutier P, et al. Transcription factor IIS cooperates with the E3 ligase UBR5 to ubiquitinate the CDK9 subunit of the positive transcription elongation factor B. J Biol Chem. 2011;286(7):5012–22. doi: 10.1074/jbc.M110.176628

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.