296
Views
0
CrossRef citations to date
0
Altmetric
Review

TOP3A coupling with replication forks and repair of TOP3A cleavage complexes

&
Pages 115-130 | Received 25 Aug 2023, Accepted 08 Jan 2024, Published online: 11 Feb 2024

References

  • Pommier Y, Nussenzweig A, Takeda S, et al. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol. 2022;23(6):407–427. doi: 10.1038/s41580-022-00452-3
  • Bizard AH, Hickson ID. The many lives of type IA topoisomerases. J Biol Chem. 2020;295(20):7138–7153. doi: 10.1074/jbc.REV120.008286
  • Martin CA, Sarlos K, Logan CV, et al. Mutations in TOP3A Cause a Bloom Syndrome-like Disorder. Am J Hum Genet. 2018;103(2):221–231. doi: 10.1016/j.ajhg.2018.07.001
  • Nicholls TJ, Nadalutti CA, Motori E, et al. Topoisomerase 3α is required for decatenation and segregation of human mtDNA. Mol Cell. 2018;69(1):9–23 e6. doi: 10.1016/j.molcel.2017.11.033
  • Jiang W, Jia N, Guo C, et al. Predominant cellular mitochondrial dysfunction in the TOP3A gene-caused bloom syndrome-like disorder. Biochim Biophys Acta Mol Basis Dis. 2021;1867(6):166106. doi: 10.1016/j.bbadis.2021.166106
  • Primiano G, Torraco A, Verrigni D, et al. Novel TOP3A variant associated with mitochondrial disease: expanding the clinical spectrum of topoisomerase III alpha-related diseases. Neurol Genet. 2022;8(4):e200007. doi: 10.1212/NXG.0000000000200007
  • Erdinc D, Rodriguez-Luis A, Fassad MR, et al. Pathological variants in TOP3A cause distinct disorders of mitochondrial and nuclear genome stability. EMBO Mol Med. 2023;15(5):e16775. doi: 10.15252/emmm.202216775
  • Llaurado A, Rovira-Moreno E, Codina-Sola M, et al. Chronic progressive external ophthalmoplegia plus syndrome due to homozygous missense variant in TOP3A gene. Clin Genet. 2023;103(4):492–494. doi: 10.1111/cge.14287
  • Aaltonen LA, Abascal F, Abeshouse A. Consortium ITP-CAoWG. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93. doi: 10.1038/s41586-020-1969-6
  • Wang Y, Lyu YL, Wang JC. Dual localization of human DNA topoisomerase IIIα to mitochondria and nucleus. Proc Natl Acad Sci U S A. 2002;99(19):12114–12119. doi: 10.1073/pnas.192449499
  • Wu J, Feng L, Hsieh TS. Drosophila topo IIIα is required for the maintenance of mitochondrial genome and male germ-line stem cells. Proc Natl Acad Sci U S A. 2010;107(14):6228–6233. doi: 10.1073/pnas.1001855107
  • Lima CD, Wang JC, Mondragon A. Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I. Nature. 1994;367(6459):138–146. doi: 10.1038/367138a0
  • Saha LK, Saha S, Yang X, et al. Replication-associated formation and repair of human topoisomerase IIIα cleavage complexes. Nat Commun. 2023;14(1):1925. doi: 10.1038/s41467-023-37498-6
  • Wu L, Hickson ID. The bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature. 2003;426(6968):870–874. doi: 10.1038/nature02253
  • Wang W, Seki M, Narita Y, et al. Possible association of BLM in decreasing DNA double strand breaks during DNA replication. EMBO J. 2000;19(13):3428–3435. doi: 10.1093/emboj/19.13.3428
  • Shorrocks AK, Jones SE, Tsukada K, et al. The bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks. Nat Commun. 2021;12(1):585. doi: 10.1038/s41467-020-20818-5
  • Hoadley KA, Xue Y, Ling C, et al. Defining the molecular interface that connects the fanconi anemia protein FANCM to the bloom syndrome dissolvasome. Proc Natl Acad Sci U S A. 2012;109(12):4437–4442. doi: 10.1073/pnas.1117279109
  • Bizard AH, Allemand JF, Hassenkam T, et al. PICH and TOP3A cooperate to induce positive DNA supercoiling. Nat Struct Mol Biol. 2019;26(4):267–274. doi: 10.1038/s41594-019-0201-6
  • Menger KE, Chapman J, Diaz-Maldonado H, et al. Two type I topoisomerases maintain DNA topology in human mitochondria. Nucleic Acids Res. 2022;50(19):11154–11174. doi: 10.1093/nar/gkac857
  • Hangas A, Kekalainen NJ, Potter A, et al. Top3α is the replicative topoisomerase in mitochondrial DNA replication. Nucleic Acids Res. 2022;50(15):8733–8748. doi: 10.1093/nar/gkac660
  • Hand R, German J. A retarded rate of DNA chain growth in bloom’s syndrome. Proc Natl Acad Sci U S A. 1975;72(2):758–762. doi: 10.1073/pnas.72.2.758
  • Ockey CH, Saffhill R. Delayed DNA maturation, a possible cause of the elevated sister-chromatid exchange in Bloom’s syndrome. Carcinogenesis. 1986;7(1):53–57. doi: 10.1093/carcin/7.1.53
  • Lonn U, Lonn S, Nylen U, et al. An abnormal profile of DNA replication intermediates in bloom’s syndrome. Cancer Res. 1990;50(11):3141–3145.
  • Davies SL, North PS, Hickson ID. Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat Struct Mol Biol. 2007;14(7):677–679. doi: 10.1038/nsmb1267
  • Rao VA, Fan AM, Meng L, et al. Phosphorylation of BLM, dissociation from topoisomerase IIIα, and colocalization with γ-H2AX after topoisomerase I-Induced replication damage. Mol Cell Biol. 2005;25(20):8925–8937. doi: 10.1128/MCB.25.20.8925-8937.2005
  • Davies SL, North PS, Dart A, et al. Phosphorylation of the bloom’s syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol. 2004;24(3):1279–1291. doi: 10.1128/MCB.24.3.1279-1291.2004
  • Sengupta S, Linke SP, Pedeux R, et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J. 2003;22(5):1210–1222. doi: 10.1093/emboj/cdg114
  • Rao VA, Conti C, Guirouilh-Barbat J, et al. Endogenous γ-H2AX-ATM-Chk2 checkpoint activation in bloom’s syndrome helicase–deficient cells is related to DNA replication arrested forks. Mol Cancer Res. 2007;5(7):713–724. doi: 10.1158/1541-7786.MCR-07-0028
  • Yang J, O’Donnell L, Durocher D, et al. RMI1 promotes DNA replication fork progression and recovery from replication fork stress. Mol Cell Biol. 2012;32(15):3054–3064. doi: 10.1128/MCB.00255-12
  • Lee CM, Wang G, Pertsinidis A, et al. Topoisomerase III acts at the replication fork to remove precatenanes. J Bacteriol. 2019;201(7):201. doi: 10.1128/JB.00563-18
  • Bakx JAM, Biebricher AS, King GA, et al. Duplex DNA and BLM regulate gate opening by the human TopoIIIα-RMI1-RMI2 complex. Nat Commun. 2022;13(1):584. doi: 10.1038/s41467-022-28082-5
  • Hiasa H, DiGate RJ, Marians KJ. Decatenating activity of Escherichia coli DNA gyrase and topoisomerases I and III during oriC and pBR322 DNA replication in vitro. J Biol Chem. 1994;269(3):2093–2099. doi: 10.1016/S0021-9258(17)42140-5
  • Hiasa H, Marians KJ. Topoisomerase III, but not topoisomerase I, can support nascent chain elongation during theta-type DNA replication. J Biol Chem. 1994;269(51):32655–32659. doi: 10.1016/S0021-9258(18)31684-3
  • Nurse P, Levine C, Hassing H, et al. Topoisomerase III can serve as the cellular decatenase in Escherichia coli. J Biol Chem. 2003;278(10):8653–8660. doi: 10.1074/jbc.M211211200
  • Perez-Cheeks BA, Lee C, Hayama R, et al. A role for topoisomerase III in Escherichia coli chromosome segregation. Mol Microbiol. 2012;86(4):1007–1022. doi: 10.1111/mmi.12039
  • DiGate RJ, Marians KJ. Identification of a potent decatenating enzyme from Escherichia coli. J Biol Chem. 1988;263(26):13366–13373. doi: 10.1016/S0021-9258(18)37713-5
  • Minden JS, Marians KJ. Escherichia coli topoisomerase I can segregate replicating pBR322 daughter DNA molecules in vitro. J Biol Chem. 1986;261:11906–11917.
  • Suski C, Marians KJ. Resolution of converging replication forks by RecQ and topoisomerase III. Mol Cell. 2008;30(6):779–789. doi: 10.1016/j.molcel.2008.04.020
  • Butland G, Peregrin-Alvarez JM, Li J, et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature. 2005;433(7025):531–537. doi: 10.1038/nature03239
  • Graham JE, Marians KJ, Kowalczykowski SC. Independent and stochastic action of DNA polymerases in the replisome. Cell. 2017;169(7):1201–13 e17. doi: 10.1016/j.cell.2017.05.041
  • Couch FB, Bansbach CE, Driscoll R, et al. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev. 2013;27(14):1610–1623. doi: 10.1101/gad.214080.113
  • Menger KE, Rodriguez-Luis A, Chapman J, et al. Controlling the topology of mammalian mitochondrial DNA. Open Biol. 2021;11(9):210168. doi: 10.1098/rsob.210168
  • Pommier Y, Sun Y, Huang SN, et al. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol. 2016;17(11):703–721. doi: 10.1038/nrm.2016.111
  • Lai MS, Seki M, Tada S, et al. Rmi1 functions in S phase-mediated cohesion establishment via a pathway involving the Ctf18–RFC complex and Mrc1. Biochem Biophys Res Commun. 2012;427(3):682–686. doi: 10.1016/j.bbrc.2012.09.124
  • Lai MS, Seki M, Ui A, et al. Rmi1, a member of the Sgs1–Top3 complex in budding yeast, contributes to sister chromatid cohesion. EMBO Rep. 2007;8(7):685–690. doi: 10.1038/sj.embor.7401000
  • Falkenberg M, Garone C, Minczuk M. Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem. 2018;62(3):287–296. doi: 10.1042/EBC20170100
  • Holt IJ, Reyes A. Human mitochondrial DNA replication. Cold Spring Harb Perspect Biol. 2012;4(12):a012971–a012971. doi: 10.1101/cshperspect.a012971
  • Zhang H, Barcelo JM, Lee B, et al. Human mitochondrial topoisomerase I. Proc Natl Acad Sci U S A. 2001;98(19):10608–10613. doi: 10.1073/pnas.191321998
  • Tsai HZ, Lin RK, Hsieh TS. Drosophila mitochondrial topoisomerase III alpha affects the aging process via maintenance of mitochondrial function and genome integrity. J Biomed Sci. 2016;23(1):38. doi: 10.1186/s12929-016-0255-2
  • Zhang H, Zhang YW, Yasukawa T, et al. Increased negative supercoiling of mtDNA in TOP1mt knockout mice and presence of topoisomerases II and II in vertebrate mitochondria. Nucleic Acids Res. 2014;42(11):7259–7267. doi: 10.1093/nar/gku384
  • Hangas A, Aasumets K, Kekalainen NJ, et al. Ciprofloxacin impairs mitochondrial DNA replication initiation through inhibition of topoisomerase 2. Nucleic Acids Res. 2018;46(18):9625–9636. doi: 10.1093/nar/gky793
  • Berk AJ, Clayton DA. Mechanism of mitochondrial DNA replication in mouse L-cells: asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J Mol Biol. 1974;86(4):801–824. doi: 10.1016/0022-2836(74)90355-6
  • Bogenhagen D, Clayton DA. Mechanism of mitochondrial DNA replication in mouse L-cells: kinetics of synthesis and turnover of the initiation sequence. J Mol Biol. 1978;119(1):49–68. doi: 10.1016/0022-2836(78)90269-3
  • Zhang H, Pommier Y. Mitochondrial topoisomerase I sites in the regulatory D-loop region of mitochondrial DNA. Biochemistry. 2008;47(43):11196–11203. doi: 10.1021/bi800774b
  • Brown TA, Cecconi C, Tkachuk AN, et al. Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes Dev. 2005;19(20):2466–2476. doi: 10.1101/gad.1352105
  • Brown TA, Clayton DA. Genesis and wanderings: origins and migrations in asymmetrically replicating mitochondrial DNA. Cell Cycle. 2006;5(9):917–921. doi: 10.4161/cc.5.9.2710
  • Yasukawa T, Reyes A, Cluett TJ, et al. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J. 2006;25(22):5358–5371. doi: 10.1038/sj.emboj.7601392
  • Holt IJ, Lorimer HE, Jacobs HT. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell. 2000;100(5):515–524. doi: 10.1016/S0092-8674(00)80688-1
  • Shutt TE, Gray MW. Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet. 2006;22(2):90–95. doi: 10.1016/j.tig.2005.11.007
  • Kukat C, Wurm CA, Spahr H, et al. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A. 2011;108(33):13534–13539. doi: 10.1073/pnas.1109263108
  • Hudson B, Vinograd J. Catenated circular DNA molecules in HeLa cell mitochondria. Nature. 1967;216(5116):647–652. doi: 10.1038/216647a0
  • Pohjoismaki JL, Goffart S, Tyynismaa H, et al. Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks. J Biol Chem. 2009;284(32):21446–21457. doi: 10.1074/jbc.M109.016600
  • Kukat C, Davies KM, Wurm CA, et al. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc Natl Acad Sci U S A. 2015;112(36):11288–11293. doi: 10.1073/pnas.1512131112
  • Kopek BG, Shtengel G, Xu CS, et al. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci U S A. 2012;109(16):6136–6141. doi: 10.1073/pnas.1121558109
  • Albring M, Griffith J, Attardi G. Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replication. Proc Natl Acad Sci U S A. 1977;74(4):1348–1352. doi: 10.1073/pnas.74.4.1348
  • Rajala N, Gerhold JM, Martinsson P, et al. Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication. Nucleic Acids Res. 2014;42(2):952–967. doi: 10.1093/nar/gkt988
  • Peter B, Falkenberg M. TWINKLE and other human mitochondrial DNA helicases: structure, function and disease. Genes (Basel). 2020;11(4):11. doi: 10.3390/genes11040408
  • Tse YC, Kirkegaard K, Wang JC. Covalent bonds between protein and DNA. Formation of phosphotyrosine linkage between certain DNA topoisomerases and DNA. J Biol Chem. 1980;255(12):5560–5565. doi: 10.1016/S0021-9258(19)70666-8
  • Wang JC. DNA topoisomerases: why so many? J Biol Chem. 1991;266(11):6659–6662. doi: 10.1016/S0021-9258(20)89545-3
  • Sun Y, Saha LK, Saha S. Debulking of topoisomerase DNA-protein crosslinks (TOP-DPC) by the proteasome, non-proteasomal and non-proteolytic pathways. DNA Repair. 2020;94:102926. doi: 10.1016/j.dnarep.2020.102926
  • Pommier Y, Marchand C. Interfacial inhibitors: targeting macromolecular complexes. Nat Rev Drug Discov. 2011;11(1):25–36. doi: 10.1038/nrd3404
  • Cheng B, Annamalai T, Sorokin E, et al. Asp-to-asn substitution at the first position of the DxD TOPRIM motif of recombinant bacterial topoisomerase I is extremely lethal to E. coli. J Mol Biol. 2009;385(2):558–567. doi: 10.1016/j.jmb.2008.10.073
  • Cheng B, Shukla S, Vasunilashorn S, et al. Bacterial cell killing mediated by topoisomerase I DNA cleavage activity. J Biol Chem. 2005;280(46):38489–38495. doi: 10.1074/jbc.M509722200
  • Narula G, Annamalai T, Aedo S, et al. The strictly conserved arg-321 residue in the active site of Escherichia coli topoisomerase I plays a critical role in DNA rejoining. J Biol Chem. 2011;286(21):18673–18680. doi: 10.1074/jbc.M111.229450
  • Sun Y, Saha S, Wang W. Excision repair of topoisomerase DNA-protein crosslinks (TOP-DPC). DNA Repair. 2020;89:102837. doi: 10.1016/j.dnarep.2020.102837
  • Ruggiano A, Ramadan K. DNA–protein crosslink proteases in genome stability. Commun Biol. 2021;4(1):11. doi: 10.1038/s42003-020-01539-3
  • Saha S, Sun Y, Huang SN, et al. DNA and RNA cleavage complexes and repair pathway for TOP3B RNA- and DNA-Protein crosslinks. Cell Rep. 2020;33(13):108569. doi: 10.1016/j.celrep.2020.108569
  • Sun Y, Miller Jenkins LM, Su YP, et al. A conserved SUMO pathway repairs topoisomerase DNA-protein cross-links by engaging ubiquitin-mediated proteasomal degradation. Sci Adv. 2020;6(46):6. doi: 10.1126/sciadv.aba6290
  • Liu JCY, Kuhbacher U, Larsen NB, et al. Mechanism and function of DNA replication-independent DNA-protein crosslink repair via the SUMO-RNF4 pathway. EMBO J. 2021;40(18):e107413. doi: 10.15252/embj.2020107413
  • Stingele J, Bellelli R, Alte F, et al. Mechanism and Regulation of DNA-Protein crosslink repair by the DNA-Dependent Metalloprotease SPRTN. Mol Cell. 2016;64(4):688–703. doi: 10.1016/j.molcel.2016.09.031
  • Vaz B, Popovic M, Newman JA, et al. Metalloprotease SPRTN/DVC1 orchestrates replication-coupled DNA-Protein crosslink repair. Mol Cell. 2016;64(4):704–719. doi: 10.1016/j.molcel.2016.09.032
  • Lopez-Mosqueda J, Maddi K, Prgomet S. SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks. Elife. 2016;5. doi: 10.7554/eLife.21491
  • Larsen NB, Gao AO, Sparks JL, et al. Replication-coupled DNA-protein crosslink repair by SPRTN and the proteasome in xenopus egg extracts. Mol Cell. 2019;73(3):574–88 e7. doi: 10.1016/j.molcel.2018.11.024
  • Weickert P, Li HY, Gotz MJ, et al. SPRTN patient variants cause global-genome DNA-protein crosslink repair defects. Nat Commun. 2023;14(1):352. doi: 10.1038/s41467-023-35988-1
  • Bhargava V, Goldstein CD, Russell L, et al. GCNA preserves genome integrity and fertility across species. Dev Cell. 2020;52(1):38–52 e10. doi: 10.1016/j.devcel.2019.11.007
  • Dokshin GA, Davis GM, Sawle AD, et al. GCNA interacts with spartan and topoisomerase II to regulate genome stability. Dev Cell. 2020;52(1):53–68 e6. doi: 10.1016/j.devcel.2019.11.006
  • Serbyn N, Noireterre A, Bagdiul I, et al. The aspartic protease Ddi1 contributes to DNA-protein crosslink repair in yeast. Mol Cell. 2020;77(5):1066–79 e9. doi: 10.1016/j.molcel.2019.12.007
  • Kojima Y, Machida Y, Palani S, et al. FAM111A protects replication forks from protein obstacles via its trypsin-like domain. Nat Commun. 2020;11(1):1318. doi: 10.1038/s41467-020-15170-7
  • Pommier Y, Huang SY, Gao R. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair. 2014;19:114–129. doi: 10.1016/j.dnarep.2014.03.020
  • Paull TT. 20 years of Mre11 biology: No end in sight. Mol Cell. 2018;71(3):419–427. doi: 10.1016/j.molcel.2018.06.033
  • Oh J, Symington LS. Role of the Mre11 complex in preserving genome integrity. Genes (Basel). 2018;9(12):589. doi: 10.3390/genes9120589
  • Neale MJ, Pan J, Keeney S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature. 2005;436(7053):1053–1057. doi: 10.1038/nature03872
  • Hartsuiker E, Mizuno K, Molnar M, et al. Ctp1CtIP and Rad32Mre11 Nuclease activity are required for Rec12Spo11 removal, but Rec12Spo11 removal is dispensable for other MRN-dependent meiotic functions. Mol Cell Biol. 2009;29(7):1671–1681. doi: 10.1128/MCB.01182-08
  • Hartsuiker E, Neale MJ, Carr AM. Distinct requirements for the Rad32(Mre11) nuclease and Ctp1(CtIP) in the removal of covalently bound topoisomerase I and II from DNA. Mol Cell. 2009;33(1):117–123. doi: 10.1016/j.molcel.2008.11.021
  • Deng C, Brown JA, You D, et al. Multiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae. Genetics. 2005;170(2):591–600. doi: 10.1534/genetics.104.028795
  • Sacho EJ, Maizels N. DNA repair factor MRE11/RAD50 cleaves 3’-phosphotyrosyl bonds and resects DNA to repair damage caused by topoisomerase 1 poisons. J Biol Chem. 2011;286(52):44945–44951. doi: 10.1074/jbc.M111.299347
  • Lee KC, Padget K, Curtis H, et al. MRE11 facilitates the removal of human topoisomerase II complexes from genomic DNA. Biol Open. 2012;1(9):863–873. doi: 10.1242/bio.20121834
  • Hoa NN, Shimizu T, Zhou ZW, et al. Mre11 is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes. Mol Cell. 2016;64(5):1010. doi: 10.1016/j.molcel.2016.11.028
  • Quennet V, Beucher A, Barton O, et al. CtIP and MRN promote non-homologous end-joining of etoposide-induced DNA double-strand breaks in G1. Nucleic Acids Res. 2011;39(6):2144–2152. doi: 10.1093/nar/gkq1175
  • Aparicio T, Baer R, Gottesman M, et al. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II–DNA adducts. J Cell Bio. 2016;212(4):399–408. doi: 10.1083/jcb.201504005
  • Deshpande RA, Lee JH, Arora S, et al. Nbs1 converts the human Mre11/Rad50 nuclease complex into an endo/exonuclease machine specific for protein-DNA adducts. Mol Cell. 2016;64(3):593–606. doi: 10.1016/j.molcel.2016.10.010
  • Cannavo E, Cejka P. Sae2 promotes dsDNA endonuclease activity within Mre11–Rad50–Xrs2 to resect DNA breaks. Nature. 2014;514(7520):122–125. doi: 10.1038/nature13771
  • Sartori AA, Lukas C, Coates J, et al. Human CtIP promotes DNA end resection. Nature. 2007;450(7169):509–514. doi: 10.1038/nature06337
  • Anand R, Ranjha L, Cannavo E, et al. Phosphorylated CtIP functions as a Co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection. Mol Cell. 2016;64(5):940–950. doi: 10.1016/j.molcel.2016.10.017
  • Hendriks IA, Vertegaal AC. A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol. 2016;17(9):581–595. doi: 10.1038/nrm.2016.81
  • Centore RC, Yazinski SA, Tse A, et al. Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response. Mol Cell. 2012;46(5):625–635. doi: 10.1016/j.molcel.2012.05.020
  • Schellenberg MJ, Lieberman JA, Herrero-Ruiz A, et al. ZATT (ZNF451)–mediated resolution of topoisomerase 2 DNA-protein cross-links. Science. 2017;357(6358):1412–1416. doi: 10.1126/science.aam6468

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.