127
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

ZC3H12A inhibits tumor growth and metastasis of breast cancer under hypoxic condition via the inactivation of IL-17 signaling pathway

, , &
Pages 188-204 | Received 12 Jun 2023, Accepted 22 Jan 2024, Published online: 15 Feb 2024

References

  • Chhikara BS, Parang K. Global cancer statistics 2022: the trends projection analysis. Chem Bio Let. 2023;10:451.
  • Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast. 2022;66:15–23. doi: 10.1016/j.breast.2022.08.010
  • Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300. doi: 10.1001/jama.2018.19323
  • Emami Nejad A, Najafgholian S, Rostami A, et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int. 2021;21(1):1–26. doi: 10.1186/s12935-020-01719-5
  • Brahimi-Horn MC, Chiche J, Pouysségur J. Hypoxia and cancer. J Mol Med. 2007;85(12):1301–1307. doi: 10.1007/s00109-007-0281-3
  • Chen A, Sceneay J, Gödde N, et al. Intermittent hypoxia induces a metastatic phenotype in breast cancer. Oncogene. 2018;37(31):4214–4225. doi: 10.1038/s41388-018-0259-3
  • Gilkes DM. Implications of hypoxia in breast cancer metastasis to bone. Int J Mol Sci. 2016;17(10):1669. doi: 10.3390/ijms17101669
  • Jinna N, Rida P, Smart M, et al. Adaptation to hypoxia may promote therapeutic resistance to androgen receptor inhibition in triple-negative breast cancer. Int J Mol Sci. 2022;23(16):8844. doi: 10.3390/ijms23168844
  • Azimi I, Milevskiy MJ, Chalmers SB, et al. ORAI1 and ORAI3 in breast cancer molecular subtypes and the identification of ORAI3 as a hypoxia sensitive gene and a regulator of hypoxia responses. Cancers (Basel). 2019;11(2):208. doi: 10.3390/cancers11020208
  • Zheng S, Zou Y, Liang J, et al. Identification and validation of a combined hypoxia and immune index for triple‐negative breast cancer. Mol Oncol. 2020;14(11):2814–2833. doi: 10.1002/1878-0261.12747
  • Kotlinowski J, Hutsch T, Czyzynska-Cichon I, et al. Deletion of Mcpip1 in Mcpip1fl/flAlbcre mice recapitulates the phenotype of human primary biliary cholangitis. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2021;1867(5):166086. doi: 10.1016/j.bbadis.2021.166086
  • Takeuchi O. Endonuclease Regnase-1/Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in controlling immune responses and beyond. Wiley Interdiscip Rev RNA. 2018;9(1):e1449. doi: 10.1002/wrna.1449
  • Lu W, Ning H, Gu L, et al. MCPIP1 selectively destabilizes transcripts associated with an antiapoptotic gene expression program in breast cancer cells that can elicit complete tumor regression. Cancer Res. 2016;76(6):1429–1440. doi: 10.1158/0008-5472.CAN-15-1115
  • Gorka J, Marona P, Kwapisz O, et al. MCPIP1 inhibits Wnt/β-catenin signaling pathway activity and modulates epithelial-mesenchymal transition during clear cell renal cell carcinoma progression by targeting miRnas. Oncogene. 2021;40(50):6720–6735. doi: 10.1038/s41388-021-02062-3
  • Lu X, Yan CH, Yuan M, et al. In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer. Cancer Res. 2010;70(10):3905–3914. doi: 10.1158/0008-5472.CAN-09-3739
  • Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2012;41(D1):D808–D15. doi: 10.1093/nar/gks1094
  • Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696:291–303.
  • Walter W, Sánchez-Cabo F, Ricote M. Goplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912–2914. doi: 10.1093/bioinformatics/btv300
  • Wilke CO. ggridges: ridgeline plots in ‘ggplot2’. R package version 05. 2018;1:483.
  • Zhang J, Zhang J, Xu S, et al. Hypoxia-induced TPM2 methylation is associated with chemoresistance and poor prognosis in breast cancer. Cell Physiol Biochem. 2018;45(2):692–705. doi: 10.1159/000487162
  • Shi R, Liao C, Zhang Q. Hypoxia-driven effects in cancer: characterization, mechanisms, and therapeutic implications. Cells. 2021;10(3):678. doi: 10.3390/cells10030678
  • Wang J, Wang Y, Xing P, et al. Development and validation of a hypoxia‑related prognostic signature for breast cancer. Oncol Lett. 2020;20(2):1906–1914. doi: 10.3892/ol.2020.11733
  • Sun X, Luo H, Han C, et al. Identification of a hypoxia-related molecular classification and hypoxic tumor microenvironment signature for predicting the prognosis of patients with triple-negative breast cancer. Front Oncol. 2021;11:700062. doi: 10.3389/fonc.2021.700062
  • Gorka J, Marona P, Kwapisz O, et al. The anti-inflammatory protein MCPIP1 inhibits the development of ccRCC by maintaining high levels of tumour suppressors. Eur J Pharmacol. 2020;888:173591. doi: 10.1016/j.ejphar.2020.173591
  • Lyu JH, Park DW, Huang B, et al. RGS2 suppresses breast cancer cell growth via a MCPIP1-dependent pathway. J Cell Biochem. 2015;116(2):260–267. doi: 10.1002/jcb.24964
  • Chen F, Wang Q, Yu X, et al. MCPIP1-mediated NFIC alternative splicing inhibits proliferation of triple-negative breast cancer via cyclin D1-rb-E2F1 axis. Cell Death Dis. 2021;12(4):370. doi: 10.1038/s41419-021-03661-4
  • Deepak K, Vempati R, Nagaraju GP, et al. Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res. 2020;153:104683. doi: 10.1016/j.phrs.2020.104683
  • Shuai C, Yang X, Pan H, et al. Estrogen receptor downregulates expression of PD-1/PD-L1 and infiltration of CD8+ T cells by inhibiting IL-17 signaling transduction in breast cancer. Front Oncol. 2020;10:582863. doi: 10.3389/fonc.2020.582863
  • Moaaz M, Lotfy H, Motawea MA, et al. The interplay of interleukin-17A and breast cancer tumor microenvironment as a novel immunotherapeutic approach to increase tumor immunogenicity. Immunobiology. 2021;226(2):152068. doi: 10.1016/j.imbio.2021.152068
  • Hajizadeh F, Maleki LA, Alexander M, et al. Tumor-associated neutrophils as new players in immunosuppressive process of the tumor microenvironment in breast cancer. Life Sci. 2021;264:118699. doi: 10.1016/j.lfs.2020.118699
  • Changchun K, Pengchao H, Ke S, et al. Interleukin-17 augments tumor necrosis factor α-mediated increase of hypoxia-inducible factor-1α and inhibits vasodilator-stimulated phosphoprotein expression to reduce the adhesion of breast cancer cells. Oncol Lett. 2017;13(5):3253–3260. doi: 10.3892/ol.2017.5825
  • Dai H, Sheng X, Wang Y, et al. HIF1α regulates IL17 signaling pathway influencing sensitivity of taxane-based chemotherapy for breast cancer. Front Cell Dev Biol. 2021;9:729965. doi: 10.3389/fcell.2021.729965
  • Gorczynski R. IL-17 signaling in the tumor microenvironment. Tumor microenvironment: the role of interleukins–part a. 2020; 47–58.
  • Somma D, Mastrovito P, Grieco M, et al. CIKS/DDX3X interaction controls the stability of the Zc3h12a mRNA induced by IL-17. J Immunol. 2015;194(7):3286–3294. doi: 10.4049/jimmunol.1401589
  • Garg AV, Amatya N, Chen K, et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity. 2015;43(3):475–87. doi: 10.1016/j.immuni.2015.07.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.