306
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Gene expression profile of mitogen-activated kinases and microRNAs controlling their expression in HaCaT cell culture treated with lipopolysaccharide A and cyclosporine A

, , , , &
Pages 279-293 | Received 11 Jan 2024, Accepted 01 Feb 2024, Published online: 06 Mar 2024

References

  • Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20(6):1475. doi: 10.3390/ijms20061475
  • Lories RJU, Derese I, Luyten FP, et al. Activation of nuclear factor kappa B and mitogen activated protein kinases in psoriatic arthritis before and after etanercept treatment. Clin Exp Rheumatol. 2008;26(1):96–102.
  • Baran A, Nowowiejska J, Kamiński TW, et al. Circulating MAdCAM-1 and ITGB7 in patients with plaque psoriasis and eruptive lichen planus—preliminary data. Biology. 2021;10(11):1129. doi: 10.3390/biology10111129
  • Griffiths CEM, Armstrong AW, Gudjonsson JE, et al. Psoriasis. Lancet Lond Engl. 2021;397(10281):1301–1315. doi: 10.1016/S0140-6736(20)32549-6
  • Foks-Ciekalska A, Jarząb J, Bożek A, et al. The vicious circle effect: stress as effect and cause in patients with psoriasis. Postepy Dermatol Alergol. 2023;40(3):362–367. doi: 10.5114/ada.2022.120452
  • Tripathi R, Liu Z, Jain A, et al. Combating acquired resistance to MAPK inhibitors in melanoma by targeting Abl1/2-mediated reactivation of MEK/ERK/MYC signaling. Nat Commun. 2020;11(1):5463. doi: 10.1038/s41467-020-19075-3
  • Reich A, Adamski Z, Chodorowska G, et al. Psoriasis. Diagnostic and therapeutic recommendations of the Polish dermatological society. Part 2. Dermatol Rev Dermatol. 2020;107(2):110–137. doi: 10.5114/dr.2020.95259
  • Reich A, Adamski Z, Chodorowska G, et al. Psoriasis. Diagnostic and therapeutic recommendations of the Polish dermatological society. Part 1. Dermatol Rev Dermatol. 2020;107(2):92–108. doi: 10.5114/dr.2020.95258
  • Xhaja A, Shkodrani E, Frangaj S, et al. An epidemiological study on trigger factors and quality of life in psoriatic patients. Mater Socio Medica. 2014;26(3):168–171. doi: 10.5455/msm.2014.26.168-171
  • Hervé F, Bakchine H, Le Loc’h H, et al. Hemorrhagic shock syndrome with encephalopathy. Arch Fr Pediatr. 1987;44(3):195–197.
  • Cho SH, Kim HS, Lee W, et al. Eckol from ecklonia cava ameliorates TNF-α/IFN-γ-induced inflammatory responses via regulating MAPKs and NF-κB signaling pathway in HaCaT cells. Int Immunopharmacol. 2020;82:106146. doi: 10.1016/j.intimp.2019.106146
  • Yildiz A, Kaya Y, Yildiz A, et al. Post-translational regulation of the activity of ERK/MAPK and PI3K/AKT signaling pathways in neuroblastoma cancer. Post-translational modifications in cellular functions diseases. IntechOpen. 2021. doi:10.5772/intechopen.96176.
  • Yue J, López JM. Understanding MAPK Signaling Pathways in Apoptosis. Int J Mol Sci. 2020;21(7):2346. doi: 10.3390/ijms21072346
  • Zou J, Lei T, Guo P, et al. Mechanisms shaping the role of ERK1/2 in cellular senescence (review). Mol Med Rep. 2019;19(2):759–770. doi: 10.3892/mmr.2018.9712
  • Pua LJW, Mai CW, Chung FFL, et al. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma. Int J Mol Sci. 2022;23(3):1108. doi: 10.3390/ijms23031108
  • Ganguly P, Macleod T, Wong C, et al. Revisiting p38 Mitogen-Activated Protein Kinases (MAPK) in inflammatory arthritis: a narrative of the emergence of MAPK-Activated Protein kinase inhibitors (MK2i). Pharmaceuticals. 2023;16(9):1286. doi: 10.3390/ph16091286
  • Yu XJ, Li CY, Dai HY, et al. Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin. Exp Mol Pathol. 2007;83(3):413–418. doi: 10.1016/j.yexmp.2007.05.002
  • Guo J, Zhang H, Lin W, et al. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther. 2023;8(1):1–38. doi: 10.1038/s41392-023-01655-6
  • Lai B, Wu CH, Lai JH. Activation of c-Jun N-Terminal Kinase, a potential therapeutic target in autoimmune arthritis. Cells. 2020;9(11):2466. doi: 10.3390/cells9112466
  • Grabarek BO, Dąbala M, Kasela T, et al. Changes in the expression pattern of DUSP1-7 and miRNA regulating their expression in the keratinocytes treated with LPS and adalimumab. Curr Pharm Biotechnol. 2022;23(6):873–881. doi: 10.2174/1389201022666210802102508
  • Kasela T, Dąbala M, Mistarz M, et al. Effects of cyclosporine a and adalimumab on the expression profiles histaminergic system-associated genes and microRnas regulating these genes in HaCaT cells. Cell Cycle. 2022;0(0):1–18. doi: 10.1080/15384101.2022.2103342
  • Adwent I, Grabarek BO, Kojs-Mrożkiewicz M, et al. The influence of adalimumab and cyclosporine a on the expression profile of the genes related to TGFβ signaling pathways in keratinocyte cells treated with lipopolysaccharide A. Mediators Inflamm. 2020;2020:3821279. doi: 10.1155/2020/3821279
  • Grabarek BO, Kasela T, Adwent I. et al. Evaluation of the influence of adalimumab on the expression profile of leptin-related genes and proteins in keratinocytes treated with lipopolysaccharide A. Int J Mol Sci. 2021 [cited 2021 Feb 5];22(4):1595. doi: 10.3390/ijms22041595
  • Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRnas. In: Izaurralde E, editor eLife. Vol. 4. 2015; p. e05005. doi:10.7554/eLife.05005
  • Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–D131. doi: 10.1093/nar/gkz757
  • Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20(1):18. doi: 10.1186/s13059-019-1629-z
  • Rouillard AD, Gundersen GW, Fernandez NF, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database J Biol Databases Curation. 2016;2016:baw100. doi: 10.1093/database/baw100
  • Gupta R. Prolonged remission of psoriasis with azathioprine pulse therapy. Indian J Dermatol. 2015;60(4):360–363. doi: 10.4103/0019-5154.160480
  • Bowcock AM. The genetics of psoriasis and autoimmunity. Annu Rev Genomics Hum Genet. 2005;6(1):93–122. doi: 10.1146/annurev.genom.6.080604.162324
  • Ran D, Cai M, Zhang X. Genetics of psoriasis: a basis for precision medicine. Precis Clin Med. 2019;2(2):120–130. doi: 10.1093/pcmedi/pbz011
  • Gunter NV, Yap BJM, Chua CLL, et al. Combining understanding of immunological mechanisms and genetic variants toward development of personalized medicine for psoriasis patients. Front Genet. 2019;10:395. doi: 10.3389/fgene.2019.00395
  • Vide J, Magina S. Moderate to severe psoriasis treatment challenges through the era of biological drugs. An Bras Dermatol. 2017;92(5):668–674. doi: 10.1590/abd1806-4841.20175603
  • Piragine E, Petri D, Martelli A, et al. Adherence and persistence to biological drugs for psoriasis: systematic review with meta-analysis. J Clin Med. 2022;11(6):1506. doi: 10.3390/jcm11061506
  • Ożóg MK, Grabarek BO, Wierzbik-Strońska M, et al. Neurological complications of biological treatment of psoriasis. Life Basel Switz. 2022;12(1):118. doi: 10.3390/life12010118
  • Nadal-Ribelles M, Solé C, Martínez-Cebrián G, et al. Shaping the transcriptional landscape through MAPK signaling. Gen Exp Cont. 2018. IntechOpen. doi: 10.5772/intechopen.80634
  • Cohen SB, Cheng TT, Chindalore V, et al. Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheum. 2009;60(2):335–344. doi: 10.1002/art.24266
  • Lee JK, Kim NJ. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Mol J Synth Chem Nat Prod Chem. 2017;22(8):1287. doi: 10.3390/molecules22081287
  • Marber MS, Rose B, Wang Y. The p38 mitogen-activated protein kinase pathway–a potential target for intervention in infarction, hypertrophy, and heart failure. J Mol Cell Cardiol. 2011;51(4):485–490. doi: 10.1016/j.yjmcc.2010.10.021
  • Krawczyk A, Strzałka-Mrozik B, Grabarek B, et al. mRNA level of ROCK1, RHOA, and LIMK2 as genes associated with apoptosis in evaluation of effectiveness of adalimumab treatment. Pharmacol Rep PR. 2020;72(2):389–399. doi: 10.1007/s43440-020-00068-4
  • Tan Y, Qi Q, Lu C, et al. Cytokine imbalance as a common mechanism in both psoriasis and rheumatoid arthritis. Mediators Inflamm. 2017;2017:2405291. doi: 10.1155/2017/2405291
  • Chen HF, Chuang HC, Tan TH. Regulation of dual-specificity phosphatase (DUSP) ubiquitination and protein stability. Int J Mol Sci. 2019;20(11):2668. doi: 10.3390/ijms20112668
  • Kjellerup RB, Johansen C, Kragballe K, et al. The expression of dual-specificity phosphatase 1 mRNA is downregulated in lesional psoriatic skin. Br J Dermatol. 2013;168(2):339–345. doi: 10.1111/bjd.12020
  • Chen H, Xiong Y, Liu L, et al. MicroRNA-34a inhibits proliferation and stimulates apoptosis in human keratinocyte through activation of smac-mediated mitochondrial apoptotic pathway: a potential therapeutic target for psoriasis. Int J Clin Exp Pathol. 2017; 10:266–273.
  • Wang H, Zhang X, Bu J, et al. Regulation of notch1 and foxp1 by MiR-34a in psoriasis vulgaris. Int J Morphol. 2022;40(3):735–741. doi: 10.4067/S0717-95022022000300735
  • Gang L, Qun L, Liu WD, et al. MicroRNA-34a promotes cell cycle arrest and apoptosis and suppresses cell adhesion by targeting DUSP1 in osteosarcoma. Am J Transl Res. 2017; 9(12):5388.
  • Li Y, Shao J, Song J, et al. MiR-34a-3p suppresses pulmonary vascular proliferation in acute pulmonary embolism rat by targeting DUSP1. Biosci Rep. 2022;42(1):BSR20210116. doi: 10.1042/BSR20210116
  • Parveen S, Chowdhury AR, Jawed JJ, et al. Immunomodulation of dual specificity phosphatase 4 during visceral leishmaniasis. Microbes Infect. 2018;20(2):111–121. doi: 10.1016/j.micinf.2017.10.009
  • Cornell TT, Rodenhouse P, Cai Q, et al. Mitogen-activated protein kinase phosphatase 2 regulates the inflammatory response in sepsis. Infect Immun. 2010;78(6):2868–2876. doi: 10.1128/IAI.00018-10
  • Dougherty JA, Kilbane Myers J, Khan M, et al. Dual-specificity phosphatase 4 overexpression in cells prevents Hypoxia/Reoxygenation-induced apoptosis via the upregulation of eNOS. Front Cardiovasc Med. 2017 [cited 2023 Dec 22];4 doi: 10.3389/fcvm.2017.00022
  • Li Z, Chen B. DUSP4 alleviates LPS-induced chondrocyte injury in knee osteoarthritis via the MAPK signaling pathway. Exp Ther Med. 2021;22(6):1401. doi: 10.3892/etm.2021.10837
  • Wang X, Xue N, Zhao S, et al. Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway. Cell Death Dis. 2020;11(8):1–15. doi: 10.1038/s41419-020-02876-1
  • Li N, Chen J, Zhao J, et al. MicroRNA-3188 targets ETS-domain protein 4 and participates in RhoA/ROCK pathway to regulate the development of atherosclerosis. Pharm. 2017;72(11):687–693. doi: 10.1691/ph.2017.7686
  • Dolcino M, Tinazzi E, Pelosi A, et al. Gene expression analysis before and after treatment with adalimumab in patients with ankylosing spondylitis identifies molecular pathways associated with response to therapy. Genes (Basel). 2017;8(4):127. doi: 10.3390/genes8040127
  • Huang L, Guo B, Yan J, et al. CircHSPG2 knockdown attenuates hypoxia-induced apoptosis, inflammation, and oxidative stress in human AC16 cardiomyocytes by regulating the miR-1184/MAP3K2 axis. Cell Stress Chap. 2023;28(2):177–190. doi: 10.1007/s12192-023-01328-x
  • Magenta A, D’Agostino M, Sileno S, et al. The oxidative stress-induced miR-200c is upregulated in psoriasis and correlates with disease severity and determinants of cardiovascular risk. Oxid Med Cell Longev. 2019;2019:8061901. doi: 10.1155/2019/8061901
  • Denninger K, Rasmussen S, Larsen JM, et al. JNK1, but not JNK2, is required in two mechanistically distinct models of inflammatory arthritis. Am J Pathol. 2011;179(4):1884–1893. doi: 10.1016/j.ajpath.2011.06.019
  • Yang J, Do-Umehara HC, Zhang Q, et al. miR-221-5p-mediated downregulation of JNK2 aggravates acute lung injury. Front Immunol. 2021 Accessed December 22, 2023;12. DOI:10.3389/fimmu.2021.700933
  • Chong ZX, Yeap SK, Ho WY, et al. Unveiling the tumour-regulatory roles of miR-1275 in cancer. Pathol Res Pract. 2022;230:153745. doi: 10.1016/j.prp.2021.153745
  • Hashemi Sheikhshabani S, Amini-Farsani Z, Modarres P, et al. In silico identification of potential miRnas -mRNA inflammatory networks implicated in the pathogenesis of COVID-19. Hum Gene. 2023;36:201172. doi: 10.1016/j.humgen.2023.201172
  • Rasizadeh R, Aghbash PS, Nahand JS, et al. SARS-CoV-2-associated organs failure and inflammation: a focus on the role of cellular and viral microRnas. Virol J. 2023;20(1):179. doi: 10.1186/s12985-023-02152-6
  • Liu JT, Yeh HM, Liu SY, et al. Psoriatic arthritis: epidemiology, diagnosis, and treatment. World J Orthop. 2014;5(4):537–543. doi: 10.5312/wjo.v5.i4.537
  • Kamata M, Tada Y. Safety of biologics in psoriasis. J Dermatol. 2018;45(3):279–286. doi: 10.1111/1346-8138.14096
  • Nassar K, Grisanti S, Elfar E, et al. Serum cytokines as biomarkers for age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2015;253(5):699–704. doi: 10.1007/s00417-014-2738-8