223
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

REV7-p53 interaction inhibits ATM-mediated DNA damage signaling

, , , , , , , , , & ORCID Icon show all
Pages 339-352 | Received 10 Oct 2023, Accepted 18 Mar 2024, Published online: 01 Apr 2024

References

  • Bhandari J, Thada PK, Puckett Y. Fanconi anemia in StatPearls. Treasure Island (FL); 2023.
  • Mehta PA, Ebens C, et al. Fanconi anemia in GeneReviews((R)). In: Adam M, Mirzaa G, Pagon R, Wallace S, Bean L, and Gripp K, editors. Fanconi anemia. Seattle (WA); 1993. https://www.ncbi.nlm.nih.gov/books/NBK1401/
  • Ishiai M, Sato K, Tomida J, et al. Activation of the FA pathway mediated by phosphorylation and ubiquitination. Mutat Res. 2017;803-805:89–95. doi: 10.1016/j.mrfmmm.2017.05.003
  • Bluteau D, Masliah-Planchon J, Clairmont C, et al. Biallelic inactivation of REV7 is associated with Fanconi anemia. J Clin Invest. 2016;126(9):3580–3584. doi: 10.1172/JCI88010
  • Che R, Zhang J, Nepal M, et al. Multifaceted Fanconi anemia signaling. Trends Genet. 2018;34(3):171–183. doi: 10.1016/j.tig.2017.11.006
  • Pfleger CM, Salic A, Lee E, et al. Inhibition of Cdh1–APC by the MAD2-related protein MAD2L2: a novel mechanism for regulating Cdh1. Genes Dev. 2001;15(14):1759–1764. doi: 10.1101/gad.897901
  • Anand J, Chiou L, Sciandra C, et al. Roles of Trans-Lesion Synthesis (TLS) DNA polymerases in tumorigenesis and cancer therapy. NAR Cancer. 2023;5(1):zcad005. doi: 10.1093/narcan/zcad005
  • Listovsky T, Sale JE. Sequestration of CDH1 by MAD2L2 prevents premature APC/C activation prior to anaphase onset. J Cell Bio. 2013;203(1):87–100. doi: 10.1083/jcb.201302060
  • Tomida J, Takata K, Lange SS, et al. REV7 is essential for DNA damage tolerance via two REV3L binding sites in mammalian DNA polymerase ζ. Nucleic Acids Res. 2015;43(2):1000–1011. doi: 10.1093/nar/gku1385
  • Lawrence CW. Cellular roles of DNA polymerase ζ and Rev1 protein. DNA Repair. 2002;1(6):425–435. doi: 10.1016/s1568-7864(02)00038-1
  • Xu G, Chapman JR, Brandsma I, et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nat. 2015;521(7553):541–544. doi: 10.1038/nature14328
  • Boersma V, Moatti N, Segura-Bayona S, et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nat. 2015;521(7553):537–540. doi: 10.1038/nature14216
  • de Krijger I, Boersma V, Jacobs JJL. REV7: jack of many trades. Trends Cell Biol. 2021;31(8):686–701. doi: 10.1016/j.tcb.2021.04.002
  • Rosenberg SC, Corbett KD. The multifaceted roles of the HORMA domain in cellular signaling. J Cell Bio. 2015;211(4):745–755. doi: 10.1083/jcb.201509076
  • Clairmont CS, D’Andrea AD. REV7 directs DNA repair pathway choice. Trends Cell Biol. 2021;31(12):965–978. doi: 10.1016/j.tcb.2021.05.009
  • Hanafusa T, Habu T, Tomida J, et al. Overlapping in short motif sequences for binding to human REV7 and MAD2 proteins. Genes Cells. 2010;15(3):281–296 doi: 10.1111/j.1365-2443.2009.01380.x
  • Rizzo AA, Vassel FM, Chatterjee N, et al. Rev7 dimerization is important for assembly and function of the Rev1/Polζ translesion synthesis complex. Proc Natl Acad Sci U S A. 2018;115(35):E8191–E8200. doi: 10.1073/pnas.1801149115
  • Murakumo Y, Roth T, Ishii H, et al. A human REV7 homolog that interacts with the polymerase ζ catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2. J Biol Chem. 2000;275(6):4391–4397. doi: 10.1074/jbc.275.6.4391
  • de Krijger I, Fohr B, Perez SH, et al. MAD2L2 dimerization and TRIP13 control shieldin activity in DNA repair. Nat Commun. 2021;12(1):5421. doi: 10.1038/s41467-021-25724-y
  • Martin SK, Wood RD. DNA polymerase ζ in DNA replication and repair. Nucleic Acids Res. 2019;47(16):8348–8361. doi: 10.1093/nar/gkz705
  • Tomida J, Takata KI, Bhetawal S, et al. FAM35A associates with REV7 and modulates DNA damage responses of normal and BRCA1-defective cells. EMBO J 2018;37(12). doi: 10.15252/embj.201899543
  • Noordermeer SM, Adam S, Setiaputra D, et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nat. 2018;560(7716):117–121. doi: 10.1038/s41586-018-0340-7
  • Mirman Z, Lottersberger F, Takai H, et al. 53BP1–RIF1–shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nat. 2018;560(7716):112–116. doi: 10.1038/s41586-018-0324-7
  • Gupta R, Somyajit K, Narita T, et al. DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity. Cell. 2018;173(4):972–988 e923. doi: 10.1016/j.cell.2018.03.050
  • Ghezraoui H, Oliveira C, Becker JR, et al. 53BP1 cooperation with the REV7–shieldin complex underpins DNA structure-specific NHEJ. Nature. 2018;560(7716):122–127. doi: 10.1038/s41586-018-0362-1
  • Gao S, Feng S, Ning S, et al. An OB-fold complex controls the repair pathways for DNA double-strand breaks. Nat Commun. 2018;9(1):3925. doi: 10.1038/s41467-018-06407-7
  • Findlay S, Heath J, Luo VM, et al. SHLD2/FAM35A co-operates with REV7 to coordinate DNA double-strand break repair pathway choice. EMBO J 2018;37(18). doi: 10.15252/embj.2018100158
  • Dev H, Chiang TW, Lescale C, et al. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat Cell Biol. 2018;20(8):954–965. doi: 10.1038/s41556-018-0140-1
  • Sasanuma H, Tsuda M, Morimoto S, et al. BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II–DNA complexes. Proc Natl Acad Sci U S A. 2018;115(45):E10642–E10651. doi: 10.1073/pnas.1803177115
  • Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Sci. 1998;281(5383):1677–1679. doi: 10.1126/science.281.5383.1677
  • Sakaguchi K, Saito S, Higashimoto Y, et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase effect on Mdm2 binding. J Biol Chem. 2000;275(13):9278–9283. doi: 10.1074/jbc.275.13.9278
  • Sakaguchi K, Herrera JE, Saito S, et al. DNA damage activates p53 through a phosphorylation–acetylation cascade. Cascade Genes Dev. 1998;12(18):2831–2841. doi: 10.1101/gad.12.18.2831
  • Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res. 2003;1:1001–1008.
  • Hao Z, Yuan Q, Tang H, et al. The MAD2B-APC/ C-MDM2 axis mediates acute kidney injury by modulating p53. J. 2023;290(15):3858–3876. doi: 10.1111/febs.16786
  • Do Patrocinio AB, Rodrigues V, Guidi Magalhaes L. P53: stability from the ubiquitin–proteasome system and specific 26S proteasome inhibitors. ACS Omega. 2022;7(5):3836–3843. doi: 10.1021/acsomega.1c04726
  • Day TA, Palle K, Barkley LR, et al. Phosphorylated Rad18 directs DNA polymerase η to sites of stalled replication. J Cell Bio. 2010;191(5):953–966. doi: 10.1083/jcb.201006043
  • Buis J, Stoneham T, Spehalski E, et al. Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2. Nat Struct Mol Biol. 2012;19(2):246–252. doi: 10.1038/nsmb.2212
  • Wang H, Shi LZ, Wong CC, et al. The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR–mediated double-strand break repair. PLoS Genet. 2013;9(2):e1003277. doi: 10.1371/journal.pgen.1003277
  • Mirzoeva OK, Petrini JH. DNA replication-dependent nuclear dynamics of the Mre11 complex. Mol Cancer Res. 2003;1(3):207–218. https://www.ncbi.nlm.nih.gov/pubmed/12556560
  • Wohlbold L, Merrick KA, De S, et al. Chemical genetics reveals a specific requirement for Cdk2 activity in the DNA damage response and identifies Nbs1 as a Cdk2 substrate in human cells. PLoS Genet. 2012;8(8):e1002935. doi: 10.1371/journal.pgen.1002935
  • Saha LK, Kim S, Kang H, et al. Differential micronucleus frequency in isogenic human cells deficient in DNA repair pathways is a valuable indicator for evaluating genotoxic agents and their genotoxic mechanisms. Environ Mol Mutagen. 2018;59(6):529–538. doi: 10.1002/em.22201
  • Tsuda M, Terada K, Ooka M, et al. The dominant role of proofreading exonuclease activity of replicative polymerase ε in cellular tolerance to cytarabine (ara-C). Oncotarget. 2017;8(20):33457–33474. doi: 10.18632/oncotarget.16508
  • Aricescu AR, Lu W, Jones EY. A time- and cost-efficient system for high-level protein production in mammalian cells acta crystallogr D. Biol Crystallogr. 2006;62(10):1243–1250. doi: 10.1107/S0907444906029799
  • Lee YS, Gregory MT, Yang W. Human pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements pol η in cisplatin bypass. Proc Natl Acad Sci U S A. 2014;111(8):2954–2959. doi: 10.1073/pnas.1324001111
  • Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Sci. 2014;343(6166):84–87. doi: 10.1126/science.1247005
  • Kratz K, Artola-Boran M, Kobayashi-Era S, et al. FANCD2-associated nuclease 1 partially compensates for the lack of exonuclease 1 in mismatch repair. Mol Cell Biol. 2021;41(9):e0030321. doi: 10.1128/MCB.00303-21
  • Ibrahim MA, Yasui M, Saha LK, et al. Enhancing the sensitivity of the thymidine kinase assay by using DNA repair-deficient human TK6 cells. Environ Mol Mutagen. 2020;61(6):602–610. doi: 10.1002/em.22371
  • Takeuchi R, Oshige M, Uchida M, et al. Purification of drosophila DNA polymerase ζ by REV1 protein-affinity chromatography. Biochem J. 2004;382(2):535–543. doi: 10.1042/BJ20031833
  • Takata K, Shimizu T, Iwai S, et al. Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol. J Biol Chem. 2006;281(33):23445–23455. doi: 10.1074/jbc.M604317200
  • Yousefzadeh MJ, Wyatt DW, Takata K, et al. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet. 2014;10(10):e1004654. doi: 10.1371/journal.pgen.1004654
  • Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Sci. 2005;307(5712):1098–1101. doi: 10.1126/science.1106148

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.