319
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Expression profile of mRNAs and miRNAs related to mitogen-activated kinases in HaCaT cell culture treated with lipopolysaccharide a and adalimumab

, , , , , & show all
Pages 385-404 | Received 12 Feb 2024, Accepted 20 Feb 2024, Published online: 01 Apr 2024

References

  • Cho SH, Kim HS, Lee W, et al. Eckol from ecklonia cava ameliorates TNF-α/IFN-γ-induced inflammatory responses via regulating MAPKs and NF-κB signaling pathway in HaCaT cells. Int Immunopharmacol. 2020;82:106146. doi: 10.1016/j.intimp.2019.106146
  • Yildiz A, Kaya Y, Yildiz A, et al. Post-translational regulation of the activity of ERK/MAPK and PI3K/AKT signaling pathways in neuroblastoma cancer. In: Post-translational modifications in cellular functions and diseases. IntechOpen; 2021. doi: 10.5772/intechopen.96176
  • Yue J, López JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 2020;21(7):2346. doi: 10.3390/ijms21072346
  • Zou J, Lei T, Guo P, et al. Mechanisms shaping the role of ERK1/2 in cellular senescence (review). Mol Med Rep. 2019;19(2):759–770.
  • Pua LJW, Mai CW, Chung FFL, et al. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma. Int J Mol Sci. 2022;23(3):1108. doi: 10.3390/ijms23031108
  • Furue K, Ito T, Tanaka Y, et al. The EGFR-ERK/JNK-CCL20 pathway in scratched keratinocytes may underpin koebnerization in psoriasis patients. Int J Mol Sci. 2020;21(2):434. doi: 10.3390/ijms21020434
  • Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20(6):1475. doi: 10.3390/ijms20061475
  • Lories RJU, Derese I, Luyten FP, et al. Activation of nuclear factor kappa B and mitogen activated protein kinases in psoriatic arthritis before and after etanercept treatment. Clin Exp Rheumatol. 2008;26(1):96–102.
  • Baran A, Nowowiejska J, Kamiński TW, et al. Circulating MAdCAM-1 and ITGB7 in patients with plaque psoriasis and eruptive lichen planus—preliminary data. Biol. 2021;10(11):1129. doi: 10.3390/biology10111129
  • Griffiths CEM, Armstrong AW, Gudjonsson JE, et al. Psoriasis. Lancet Lond Engl. 2021;397(10281):1301–1315. doi: 10.1016/S0140-6736(20)32549-6
  • Foks-Ciekalska A, Jarząb J, Bożek A, et al. The vicious circle effect: stress as effect and cause in patients with psoriasis. Postepy Dermatol Alergol. 2023;40(3):362–367. doi: 10.5114/ada.2022.120452
  • Wang Y, Han D, Huang Y, et al. Oral administration of punicalagin attenuates imiquimod-induced psoriasis by reducing ROS generation and inflammation via MAPK/ERK and NF-κB signaling pathways. Phytother Res. 2024;38(2):713–726. doi: 10.1002/ptr.8071
  • Hervé F, Bakchine H, Le Loc’h H, et al. Hemorrhagic shock syndrome with encephalopathy. Arch Fr Pediatr. 1987;44(3):195–197.
  • Ganguly P, Macleod T, Wong C, et al. Revisiting p38 Mitogen-Activated Protein Kinases (MAPK) in inflammatory arthritis: A narrative of the emergence of MAPK-Activated Protein kinase inhibitors (MK2i). Pharmaceuticals. 2023;16(9):1286. doi: 10.3390/ph16091286
  • Zhu X, Xu Q, Liu Z, et al. Qingre lishi decoction ameliorates imiquimod-induced psoriasis-like skin lesions in SKH-1 mice by regulating the Treg-DC-Th17 axis and inhibiting MAPK-mediated DC maturation. J Ethnopharmacol. 2024;318:116931. doi: 10.1016/j.jep.2023.116931
  • Reich A, Adamski Z, Chodorowska G, et al. Psoriasis. Diagnostic and therapeutic recommendations of the Polish dermatological society. Part 2. Dermatol Rev Dermatol. 2020;107(2):110–137.
  • Reich A, Adamski Z, Chodorowska G, et al. Psoriasis. Diagnostic and therapeutic recommendations of the Polish dermatological society. Part 1. Dermatol Rev Dermatol. 2020;107(2):92–108.
  • Xhaja A, Shkodrani E, Frangaj S, et al. An epidemiological study on trigger factors and quality of life in psoriatic patients. Mater Socio Medica. 2014;26(3):168–171. doi: 10.5455/msm.2014.26.168-171
  • Yu XJ, Li CY, Dai HY, et al. Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin. Exp Mol Pathol. 2007;83(3):413–418. doi: 10.1016/j.yexmp.2007.05.002
  • Guo J, Zhang H, Lin W, et al. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther. 2023;8(1):1–38. doi: 10.1038/s41392-023-01655-6
  • Lai B, Wu CH, Lai JH. Activation of c-Jun N-Terminal Kinase, a potential therapeutic target in autoimmune arthritis. Cells. 2020;9(11):2466. doi: 10.3390/cells9112466
  • Wu X, Ma Y, Wang L, et al. A route for investigating psoriasis: from the perspective of the pathological mechanisms and therapeutic strategies of cancer. Int J Mol Sci. 2023;24(18):14390. doi: 10.3390/ijms241814390
  • Xu F, Xu J, Xiong X, et al. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Rep. 2019;24(1):70–74. doi: 10.1080/13510002.2019.1658377
  • Conley RR, Kelly DL, Love RC, et al. Rehospitalization risk with second-generation and depot antipsychotics. Ann Clin Psychiatry. 2003;15(1):23–31. doi: 10.3109/10401230309085667
  • Xu Q, Sheng L, Zhu X, et al. Jingfang granules exert anti-psoriasis effect by targeting MAPK-mediated dendritic cell maturation and PPARγ-mediated keratinocytes cell cycle progression in vitro and in vivo. Phytomed Published online. 2023;117:154925. doi: 10.1016/j.phymed.2023.154925
  • Bai D, Cheng X, Li Q, et al. Eupatilin inhibits keratinocyte proliferation and ameliorates imiquimod-induced psoriasis-like skin lesions in mice via the p38 MAPK/NF-κB signaling pathway. Immunopharmacol Immunotoxicol. 2023;45(2):133–139.
  • Risco A, Cuenda A. New insights into the p38γ and p38δ MAPK pathways. J Signal Transduct. 2012;2012:1–8. [cited 2024 February 1] Available from: https://www.hindawi.com/journals/archive/2012/520289/
  • Assefi M, Lewandrowski KU, Lorio M, et al. Network-based in silico analysis of new combinations of modern drug targets with methotrexate for response-Based treatment of rheumatoid arthritis. J Pers Med. 2023;13(11):1550. doi: 10.3390/jpm13111550
  • Xiao Y, Wang H, Wang C, et al. miR-203 promotes HaCaT cell overproliferation through targeting LXR-α and PPAR-γ. Cell Cycle. 2020;19(15):1928–1940. doi: 10.1080/15384101.2020.1783934
  • Grabarek BO, Dąbala M, Kasela T, et al. Changes in the expression pattern of DUSP1-7 and miRNA regulating their expression in the keratinocytes treated with LPS and adalimumab. Curr Pharm Biotechnol. 2022;23(6):873–881. doi: 10.2174/1389201022666210802102508
  • Kasela T, Dąbala M, Mistarz M, et al. Effects of cyclosporine a and adalimumab on the expression profiles histaminergic system-associated genes and microRnas regulating these genes in HaCaT cells. Cell Cycle. 2022;0(0):1–18. doi: 10.1080/15384101.2022.2103342
  • Adwent I, Grabarek BO, Kojs-Mrożkiewicz M, et al. The influence of adalimumab and cyclosporine a on the expression profile of the genes related to TGFβ signaling pathways in keratinocyte cells treated with lipopolysaccharide A. Mediators Inflamm. 2020;2020:3821279. doi: 10.1155/2020/3821279
  • Evaluation of the influence of adalimumab on the expression profile of leptin-related genes and proteins in keratinocytes treated with lipopolysaccharide A - PubMed. [cited 2023 May 19]. Available from. https://pubmed.ncbi.nlm.nih.gov/33562571/
  • Belinky F, Nativ N, Stelzer G, et al. PathCards: multi-source consolidation of human biological pathways. Database J Biol Databases Curation. 2015;2015:bav006. doi: 10.1093/database/bav006
  • Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRnas. In: Izaurralde E, editor. eLife. Vol. 4. 2015; p. e05005. doi :10.7554/eLife.05005
  • Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–D131. doi: 10.1093/nar/gkz757
  • Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20(1):18. doi: 10.1186/s13059-019-1629-z
  • Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–D646.
  • Li Z, Liu Y, Fang X, et al. Nanomaterials enhance the immunomodulatory effect of molecular targeted therapy. Int J Nanomedicine. 2021;16:1631–1661. doi: 10.2147/IJN.S290346
  • Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6(1):201. doi: 10.1038/s41392-021-00572-w
  • Yang D, Chen M, Sun Y, et al. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater. 2021;121:119–133. doi: 10.1016/j.actbio.2020.12.004
  • Honma M, Hayashi K. Psoriasis: recent progress in molecular‐targeted therapies. J Dermatol. 2021;48(6):761–777. doi: 10.1111/1346-8138.15727
  • Guo J, Zhang H, Lin W, et al. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther. 2023;8(1):437. doi: 10.1038/s41392-023-01655-6
  • Tokuyama M, Mabuchi T. New treatment addressing the pathogenesis of psoriasis. Int J Mol Sci. 2020;21(20):7488. doi: 10.3390/ijms21207488
  • Gupta R. Prolonged remission of psoriasis with azathioprine pulse therapy. Indian J Dermatol. 2015;60(4):360–363. doi: 10.4103/0019-5154.160480
  • Bowcock AM. The genetics of psoriasis and autoimmunity. Annu Rev Genomics Hum Genet. 2005;6(1):93–122. doi: 10.1146/annurev.genom.6.080604.162324
  • Ran D, Cai M, Zhang X. Genetics of psoriasis: a basis for precision medicine. Precis Clin Med. 2019;2(2):120–130. doi: 10.1093/pcmedi/pbz011
  • Gunter NV, Yap BJM, Chua CLL, et al. Combining understanding of immunological mechanisms and genetic variants toward development of personalized medicine for psoriasis patients. Front Genet. 2019;10:395. doi: 10.3389/fgene.2019.00395
  • Vide J, Magina S. Moderate to severe psoriasis treatment challenges through the era of biological drugs. An Bras Dermatol. 2017;92(5):668–674. doi: 10.1590/abd1806-4841.20175603
  • Piragine E, Petri D, Martelli A, et al. Adherence and persistence to biological drugs for psoriasis: systematic review with meta-analysis. J Clin Med. 2022;11(6):1506. doi: 10.3390/jcm11061506
  • Ożóg MK, Grabarek BO, Wierzbik-Strońska M, et al. Neurological complications of biological treatment of psoriasis. Life Basel Switz. 2022;12(1):118. doi: 10.3390/life12010118
  • Niu L, Fang Y, Yao X, et al. TNFα activates MAPK and jak-stat pathways to promote mouse müller cell proliferation. Exp Eye Res. 2021;202:108353. doi: 10.1016/j.exer.2020.108353
  • Li Q, Cheng F, Zhou K, et al. Increased sensitivity to TNF‑α promotes keloid fibroblast hyperproliferation by activating the NF‑κB, JNK and p38 MAPK pathways. Exp Ther Med. 2021;21(5):502. doi: 10.3892/etm.2021.9933
  • Asl ER, Amini M, Najafi S, et al. Interplay between MAPK/ERK signaling pathway and MicroRNAs: a crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 2021;278:119499. doi: 10.1016/j.lfs.2021.119499
  • Krawczyk A, Strzałka-Mrozik B, Grabarek B, et al. mRNA level of ROCK1, RHOA, and LIMK2 as genes associated with apoptosis in evaluation of effectiveness of adalimumab treatment. Pharmacol Rep PR. 2020;72(2):389–399. doi: 10.1007/s43440-020-00068-4
  • Kjellerup RB, Johansen C, Kragballe K, et al. The expression of dual-specificity phosphatase 1 mRNA is downregulated in lesional psoriatic skin. Br J Dermatol. 2013;168(2):339–345. doi: 10.1111/bjd.12020
  • Tan Y, Qi Q, Lu C, et al. Cytokine imbalance as a common mechanism in both psoriasis and rheumatoid arthritis. Mediators Inflamm. 2017;2017:2405291. doi: 10.1155/2017/2405291
  • Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase phosphatases in health and disease. Biochim Biophys Acta Mol Cell Res. 2019;1866(1):124–143. doi: 10.1016/j.bbamcr.2018.09.002
  • Zhao W, Xiao S, Li H, et al. MAPK phosphatase-1 deficiency exacerbates the severity of imiquimod-induced psoriasiform skin disease. Front Immunol. 2018;9:569. doi: 10.3389/fimmu.2018.00569
  • Pulido R, Lang R. Dual specificity phosphatases: from molecular mechanisms to biological function. Int J Mol Sci. 2019;20(18):4372. doi: 10.3390/ijms20184372
  • Sun F, Yue TT, Yang CL, et al. The MAPK Dual Specific Phosphatase (DUSP) Proteins: a versatile wrestler in T cell functionality. Int Immunopharmacol. 2021;98:107906. doi: 10.1016/j.intimp.2021.107906
  • Subbannayya Y, Pinto SM, Bösl K, et al. Dynamics of dual specificity phosphatases and their interplay with protein kinases in immune signaling. Int J Mol Sci. 2019;20(9):2086. doi: 10.3390/ijms20092086
  • Zhang Y, Reynolds JM, Chang SH, et al. MKP-1 is necessary for T cell activation and function. J Biol Chem. 2009;284(45):30815–30824. doi: 10.1074/jbc.M109.052472
  • Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-specific upregulation. Int J Genomic. 2014;2014:e970607. doi: 10.1155/2014/970607
  • Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRnas. Annu Rev Biochem. 2010;79(1):351–379. doi: 10.1146/annurev-biochem-060308-103103
  • Yao Q, Chen Y, Zhou X. The roles of microRnas in epigenetic regulation. Curr Opin Chem Biol. 2019;51:11–17. doi: 10.1016/j.cbpa.2019.01.024
  • Najar M, Fayyad-Kazan H, Faour WH, et al. Immunological modulation following bone marrow-derived mesenchymal stromal cells and Th17 lymphocyte co-cultures. Inflamm Res. 2019;68(3):203–213. doi: 10.1007/s00011-018-1205-0
  • Delmas D, Limagne E, Ghiringhelli F, et al. Immune Th17 lymphocytes play a critical role in the multiple beneficial properties of resveratrol. Food Chem Toxicol. 2020;137:111091. doi: 10.1016/j.fct.2019.111091
  • Chen H, Xiong Y, Liu L, et al. MicroRNA-34a inhibits proliferation and stimulates apoptosis in human keratinocyte through activation of smac-mediated mitochondrial apoptotic pathway: a potential therapeutic target for psoriasis. Int J Clin Exp Pathol 2017;10(1):266–273.
  • Wang H, Zhang X, Bu J, et al. Regulation of Notch1 and Foxp1 by MiR-34a in psoriasis vulgaris. Int J Morphol. 2022;40(3):735–741. doi: 10.4067/S0717-95022022000300735
  • Gang L, Qun L, Liu WD, et al. MicroRNA-34a promotes cell cycle arrest and apoptosis and suppresses cell adhesion by targeting DUSP1 in osteosarcoma. Am J Transl Res. 2017;9(12):5388–5399. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752889/
  • Li Y, Shao J, Song J, et al. MiR-34a-3p suppresses pulmonary vascular proliferation in acute pulmonary embolism rat by targeting DUSP1. Biosci Rep. 2022;42(1):BSR20210116. doi: 10.1042/BSR20210116
  • Zaba LC, Suárez- Fariñfariñas M, Fuentes-Duculan J, et al. Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J Allergy Clin Immunol. 2009;124(5):1022–1030.e395. doi: 10.1016/j.jaci.2009.08.046
  • Mrowka R. Recent advances in kidney research. Acta Physiol. 2022;235(2):e13820. doi: 10.1111/apha.13820
  • Loh CY, Arya A, Naema AF, et al. Signal Transducer and Activator of Transcription (STATs) proteins in cancer and inflammation: functions and therapeutic implication. Front Oncol. 2019;9:48. doi: 10.3389/fonc.2019.00048
  • Huang CY, Lin YC, Hsiao WY, et al. DUSP4 deficiency enhances CD25 expression and CD4+ T-cell proliferation without impeding T-cell development. Eur J Immunol. 2012;42(2):476–488. doi: 10.1002/eji.201041295
  • Hsiao WY, Lin YC, Liao FH, et al. Dual-specificity phosphatase 4 regulates STAT5 protein stability and helper T cell polarization*. PLoS One. 2015;10(12):e0145880. doi: 10.1371/journal.pone.0145880
  • Johar AS, Mastronardi C, Rojas-Villarraga A, et al. Novel and rare functional genomic variants in multiple autoimmune syndrome and sjögren’s syndrome. J Transl Med. 2015;13(1):173. doi: 10.1186/s12967-015-0525-x
  • Dougherty JA, Kilbane Myers J, Khan M, et al. Dual-specificity phosphatase 4 overexpression in cells prevents Hypoxia/Reoxygenation-induced apoptosis via the upregulation of eNOS. Front Cardiovasc Med. 2017;4. [cited 2023 December 22] doi: 10.3389/fcvm.2017.00022
  • Li Z, Chen B. DUSP4 alleviates LPS-induced chondrocyte injury in knee osteoarthritis via the MAPK signaling pathway. Exp Ther Med. 2021;22(6):1401. doi: 10.3892/etm.2021.10837
  • Li N, Chen J, Zhao J, et al. MicroRNA-3188 targets ETS-domain protein 4 and participates in RhoA/ROCK pathway to regulate the development of atherosclerosis. Pharm. 2017;72(11):687–693. doi: 10.1691/ph.2017.7686
  • Zhou Q, Hu Z, Ye P, et al. Differential microRNA profiles between fulvestrant-resistant and tamoxifen-resistant human breast cancer cells - PubMed. Anticancer Drugs. 2018;29(6):539–548. doi: 10.1097/CAD.0000000000000623
  • Zhao M, Luo R, Liu Y, et al. Author correction: miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR-p-PI3K/AKT-c-JUN. Nat Commun. 2021;12(1):2997.
  • Mie Y, Hirano Y, Kowata K, et al. Function control of anti-microRNA oligonucleotides using interstrand cross-linked duplexes. Mol Ther Nucleic Acid. 2017;10:64–74. doi: 10.1016/j.omtn.2017.11.003
  • Grabarek B, Schweizer P, Adwent I, et al. Differences in expression of genes related to drug resistance and miRNAs regulating their expression in skin fibroblasts exposed to adalimumab and cyclosporine a. Adv Dermatol Allergol Dermatol Alergol. 2020;38(2):249–255.
  • Grabarek B, Wcislo-Dziadecka D, Gola J, et al. Changes in the expression profile of JAK/STAT signaling pathway genes and miRNAs regulating their expression under the adalimumab therapy. Curr Pharm Biotechnol. 2018;19(7):556–565. doi: 10.2174/1389201019666180730094046
  • Grabarek BO, Wcisło-Dziadecka D, Michalska-Bańkowska A, et al. Evaluation of expression pattern of selected genes associated with IL12/23 signaling paths in psoriatic patients during cyclosporine a therapy. Dermatol Ther. 2019;32(6):e13129. doi: 10.1111/dth.13129
  • Grabarek B, Wcisło-Dziadecka D, Strzałka-Mrozik B, et al. The capability to forecast response to therapy with regard to the time and intensity of the inflammatory process in vitro in dermal fibroblasts induced by IL-12. Curr Pharm Biotechnol. 2018;19(15):1232–1240. doi: 10.2174/1389201020666190111163312
  • Denninger K, Rasmussen S, Larsen JM, et al. JNK1, but not JNK2, is required in two mechanistically distinct models of inflammatory arthritis. Am J Pathol. 2011;179(4):1884–1893. doi: 10.1016/j.ajpath.2011.06.019
  • Bertelsen T, Ljungberg C, Litman T, et al. IκBζ is a key player in the antipsoriatic effects of secukinumab. J Allergy Clin Immunol. 2020;145(1):379–390. doi: 10.1016/j.jaci.2019.09.029
  • Yang J, Do-Umehara HC, Zhang Q, et al. miR-221-5p-mediated downregulation of JNK2 aggravates acute lung injury. Front Immunol. 2021;12. [cited 2023 December 22] doi: 10.3389/fimmu.2021.700933
  • Chong ZX, Yeap SK, Ho WY, et al. Unveiling the tumour-regulatory roles of miR-1275 in cancer. Pathol Res Pract. 2022;230:153745. doi: 10.1016/j.prp.2021.153745
  • Huang L, Guo B, Yan J, et al. CircHSPG2 knockdown attenuates hypoxia-induced apoptosis, inflammation, and oxidative stress in human AC16 cardiomyocytes by regulating the miR-1184/MAP3K2 axis. Cell Stress Chaperones. 2023;28(2):177–190. doi: 10.1007/s12192-023-01328-x
  • Magenta A, D’Agostino M, Sileno S, et al. The oxidative stress-induced miR-200c is upregulated in psoriasis and correlates with disease severity and determinants of cardiovascular risk. Oxid Med Cell Longev. 2019;2019:8061901. doi: 10.1155/2019/8061901
  • Mavropoulos A, Rigopoulou EI, Liaskos C, et al. The role of p38 MAPK in the aetiopathogenesis of psoriasis and psoriatic arthritis. Clin Dev Immunol. 2013;2013:569751. doi: 10.1155/2013/569751
  • Fiore M, Forli S, Manetti F. Targeting mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2, MK2): medicinal chemistry efforts to lead small molecule inhibitors to clinical trials. J Med Chem. 2016;59(8):3609–3634. doi: 10.1021/acs.jmedchem.5b01457
  • Kumar S, Principe DR, Singh SK, et al. Mitogen-activated protein kinase inhibitors and T-cell-dependent immunotherapy in cancer. Pharm. 2020;13(1):9. doi: 10.3390/ph13010009
  • Zhong QH, Lau AT, Xu YM. Mitogen-activated protein kinase 15 is a new predictive biomarker and potential therapeutic target for ovarian cancer. Int J Mol Sci. 2023;25(1):109. doi: 10.3390/ijms25010109
  • Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Research. 2020;9:653. doi: 10.12688/f1000research.22092.1
  • Ray, Ray AL, Berggren KL, et al. Inhibition of MK2 suppresses IL‐1β, IL‐6, and TNF‐α‐dependent colorectal cancer growth. 2018. Wiley Online Library Int J Cancer. 142(8):1702–1711. [cited 2024 February 4]. 10.1002/ijc.31191.
  • Krawczyk A, Strzałka-Mrozik B, Juszczyk K, et al. The MAP2K2 gene as potential diagnostic marker in monitoring adalimumab therapy of psoriatic arthritis. doi: 10.2174/1389201023666220628111644