147
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Discovery of common molecular signatures and drug repurposing for COVID-19/Asthma comorbidity: ACE2 and multi-partite networks

, , , , , , , , , , , & show all
Pages 405-434 | Received 27 Jun 2023, Accepted 04 Apr 2024, Published online: 19 Apr 2024

References

  • He R, Chen Y, Chen X, et al. Mechanism of Mir-181a-5p in regulatory T/T-helper 17 immune imbalance and asthma development in mice with allergic rhinitis. Int Arch Allergy Immunol. 2022;183(4):375–388. doi: 10.1159/000523388
  • Horváth E, Rossi L, Mercier C, et al. Photocatalytic nanowires-based air filter: towards reusable protective masks. Adv Funct Mater. 2020;30:2004615. doi: 10.1002/adfm.202004615
  • Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430–436.
  • Kaczyńska K, Zając D, Wojciechowski P, et al. Regulatory Peptides in Asthma. Int J Mol Sci. 2021;22:13656. doi: 10.3390/ijms222413656
  • Luo Y-S, Shen X-C, Li W, et al. Genetic screening for hypertension and COVID-19 reveals functional variation of SPEG potentially associated with severe COVID-19 in women. Front Genet. 2023;13:1041470. doi: 10.3389/fgene.2022.1041470
  • Mahmud SH, Al-Mustanjid M, Akter F, et al. Bioinformatics and system biology approach to identify the influences of SARS-CoV-2 infections to idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease patients. Brief Bioinform. 2021;22:2112–2123. doi: 10.1093/bib/bbab115
  • Subramanian A, Anand A, Adderley NJ, et al. Increased COVID-19 infections in women with polycystic ovary syndrome: a population-based study. Eur J Endocrinol. 2021;184(5):637–645.
  • Cai L, He C, Liu Y, et al. Inflammation and immunity connect hypertension with adverse COVID-19 outcomes. Front Genet. 2022;13:933148. doi: 10.3389/fgene.2022.933148
  • Papi A, Brightling C, Pedersen SE, et al. Asthma. Lancet. 2018;391(10122):783–800. doi: 10.1016/S0140-6736(17)33311-1
  • Chhiba KD, Patel GB, vu THT, et al. Prevalence and characterization of asthma in hospitalized and nonhospitalized patients with COVID-19. J Allergy Clin Immunol. 2020;146(2):307–314. doi: 10.1016/j.jaci.2020.06.010
  • Akbari A, Javanmardi F, Pirbonyeh N, et al. Prevalence of underlying diseases in hospitalized patients with Covid-19: A systematic review and meta-analysis. Arch Acad Emerg Med. 2020;8(10):e35. doi: 10.22037/aaem.v8i1.643
  • Lamontagne F, Stegemann M, Agarwal A, et al. A living WHO guideline on drugs to prevent COVID-19. BMJ. 2021;372:526. doi: 10.1136/bmj.n526
  • Wang B, Li R, Lu Z, et al. Does comorbidity increase the risk of patients with Covid-19: Evidence from meta-analysis. Aging. 2020;12(7):6049–6057. doi: 10.18632/aging.103000
  • Choi YJ, Park JY, Lee HS, et al. Effect of asthma and asthma medication on the prognosis of patients with Covid-19. Eur Respir J. 2021;57(4):2002226. doi: 10.1183/13993003.02226-2020
  • Izquierdo JL, Almonacid C, Gonzalez Y, et al. The impact of Covid-19 on patients with asthma. Eur Respir J. 2021;57:2003142. doi: 10.1183/13993003.03142-2020
  • Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730–1741. doi: 10.1111/all.14238
  • Kuhn JH, Li W, Choe H, et al. What’s new in the renin-angiotensin system? Cell Mol Life Sci. 2004;61(21):2738–2743. doi: 10.1007/s00018-004-4242-5
  • Brake SJ, Barnsley K, Lu W, et al. Smoking upregulates angiotensin-converting enzyme-2 receptor: a potential adhesion site for novel coronavirus SARS-CoV-2 (Covid-19). J Clin Med. 2020;9(3):841. doi: 10.3390/jcm9040841
  • Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635–664. doi: 10.1128/MMBR.69.4.635-664.2005
  • Wong AW, Fidler L, Marcoux V, et al. Practical considerations for the diagnosis and treatment of fibrotic interstitial lung disease during the coronavirus disease 2019 pandemic. Chest. 2020;158(4):1069–1078.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Bio. 2014;15(12):1–21. doi: 10.1186/s13059-014-0550-8
  • Garfan S, Alamoodi AH, Zaidan BB, et al. Telehealth utilization during the Covid-19 pandemic: A systematic review. Comput Biol Med. 2021;138:104878. doi: 10.1016/j.compbiomed.2021.104878
  • Datta PK, Liu F, Fischer T, et al. Sars-Cov-2 pandemic and research gaps: understanding SARS-COV-2 interaction with the Ace2 receptor and implications for therapy. Theranostics. 2020;10(16):7448–7464. doi: 10.7150/thno.48076
  • Overmyer KA, Shishkova E, Miller IJ, et al. Large-scale multi-omic analysis of COVID-19 severity. Cell Systems. 2021;12(1):23–40.e7.
  • Grant RA, Morales-Nebreda L, Markov NS, et al. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature. 2021;590(7847):635–641.
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41(D1):D991–D995. doi: 10.1093/nar/gks1193
  • Grondin CJ, Davis AP, Wiegers JA, et al. Predicting molecular mechanisms, pathways, and health outcomes induced by Juul e-cigarette aerosol chemicals using the comparative toxicogenomics database. Curr Res Toxicol. 2021;2:272–281. doi: 10.1016/j.crtox.2021.08.001
  • Brown GR, Hem V, Katz KS, et al. Gene: a gene-centered information resource at NCBI. Nucleic Acids Res. 2014;43(D1):D36–D42. doi: 10.1093/nar/gku1055
  • Wang S, Yang Y, Luo D, et al. Lung inflammation induced by exposure to Bisphenol-A is associated with mTOR-mediated autophagy in adolescent mice. Chemosphere. 2020;248:126035. doi: 10.1016/j.chemosphere.2020.126035
  • Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinform. 2016;54(1):.1.30.1–.1.30.33.
  • Amberger JS, Bocchini CA, Schiettecatte F, et al. OMIM.Org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43(D1):D789–D798. doi: 10.1093/nar/gku1205
  • Kim S, Chen J, Cheng T, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):1388–1395.
  • Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–D1082. doi: 10.1093/nar/gkx1037
  • Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48(D1):D845–D855.
  • Perotin JM, Schofield JPR, Wilson SJ, et al. Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux. Eur Respir J. 2019;53(6):1900453.
  • Weathington N, O’Brien ME, Radder J, et al. BAL cell gene expression in severe asthma reveals mechanisms of severe disease and influences of medications. Am J Respir Crit Care Med. 2019;200(7):837–856.
  • Rudraraju R, Gartner MJ, Neil JA, et al. Parallel use of human stem cell lung and heart models provide insights for SARS-CoV-2 treatment. Stem Cell Rep. 2023;18(6):1308–1324. doi: 10.1016/j.stemcr.2023.05.007
  • Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–1035.e19.
  • Kim-Hellmuth S, Aguet F, Oliva M, et al. Cell type–specific genetic regulation of gene expression across human tissues. Science. 2020;369(6509):eaaz8528.
  • Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(suppl_2):W214–W220. doi: 10.1093/nar/gkq537
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613.
  • Mulligan MK, Mozhui K, Prins P, et al. Genenetwork: A toolbox for systems genetics. Methods Mol Biol. 2017;1488:75–120. doi: 10.1007/978-1-4939-6427-7_6
  • Smedley D, Haider S, Durinck S, et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 2015;43(W1):W589–W598. doi: 10.1093/nar/gkv350
  • Oughtred R, Rust J, Chang C, et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30(1):187–200.
  • Xie Z, Bailey A, Kuleshov MV, et al. Gene set knowledge discovery with Enrichr. Curr Protoc. 2021;1(3):e90.
  • Yu G, Wang LG, Han Y, et al. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi: 10.1089/omi.2011.0118
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B (Methodological). 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x
  • Smyth GK, Ritchie M, Thorne N, et al. LIMMA: linear models for microarray data. In: Bioinformatics and computational biology solutions using R and bioconductor. New York, NY: Springer; 2005. pp. 397–420. doi: 10.1007/0-387-29362-0_23
  • Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(W1):W605–W612.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504.
  • Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf. 2003;4(1):2. doi: 10.1186/1471-2105-4-2
  • Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(S4):S11. doi: 10.1186/1752-0509-8-S4-S11
  • Franz M, Rodriguez H, Lopes C, et al. GeneMANIA update 2018. Nucleic Acids Res. 2018;46:W60–W64. doi: 10.1093/nar/gky311
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Nat Acad Sci. 2005;102(43):15545–15550.
  • Liberzon A, Subramanian A, Pinchback R, et al. Molecular Signatures Database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–1740. doi: 10.1093/bioinformatics/btr260
  • Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature Biotechnol. 2019;37(7):773–782.
  • Fornes O, Castro-Mondragon JA, Khan A, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87–D92. doi: 10.1093/nar/gkz1001
  • Saito R, Smoot ME, Ono K, et al. A travel guide to Cytoscape plugins. Nat Methods. 2012;9(11):1069–1076.
  • Cotto KC, Wagner AH, Feng YY, et al. Dgidb 3.0: a redesign and expansion of the drug–gene interaction database. Nucleic Acids Res. 2018;46(D1):D1068–D1073. doi: 10.1093/nar/gkx1143
  • Xia J, Gill EE, Hancock REW. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc. 2015;10(6):823–844. doi: 10.1038/nprot.2015.052
  • Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf. 2011;12(1):77. doi: 10.1186/1471-2105-12-77
  • Qian G, Jiang W, Zou B, et al. LPS inactivation by a host lipase allows lung epithelial cell sensitization for allergic asthma. J Exp Med. 2018;215(9):2397–2412.
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–242.
  • Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–W303. doi: 10.1093/nar/gky427
  • Kim S, Chen J, Cheng T, et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019;47:D1102–D1109. doi: 10.1093/nar/gky1033
  • DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter On Protein Crystallogr. 2002;40(1):82–92. doi: 10.1107/S0907444902006100
  • Halgren TA. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J Comput Chem. 1999;20(7):730–748. doi: 10.1002/(SICI)1096-987X(199905)20:7<730:AID-JCC8>3.0.CO;2-T
  • Aboudounya MM, Heads RJ, Dozio E. COVID-19 and toll-like receptor 4 (TLR4): SARS-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyperinflammation. Mediators Inflamm. 2021;2021:1–18. doi: 10.1155/2021/8870819
  • Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Chem Biol. 2015;10(3):243–250. doi: 10.1038/nchembio.1758
  • BIOVIA. Discovery studio modeling environment release 2017. San Diego, CA: BIOVIA. Discovery Studio; 2016.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. doi: 10.1002/jcc.21334
  • Berendsen HJ, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91(1–3):43–56. doi: 10.1016/0010-4655(95)00042-E
  • van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–1718. doi: 10.1002/jcc.20291
  • Hess B, Bekker H, Berendsen HJ, et al. LINCS: A linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H
  • Khateri S, Mohammadi H, Khateri R, et al. The prevalence of underlying diseases and comorbidities in COVID-19 patients; an updated systematic review and meta-analysis. Arch Acad Emerg Med. 2020;8(1):e72. doi: 10.22037/aaem.v8i1.605
  • Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905–913.
  • Goodwin CM, Xu S, Munger J. Stealing the keys to the kitchen: viral manipulation of the host cell metabolic network. Trends Microbiol. 2015;23(12):789–798. doi: 10.1016/j.tim.2015.10.003
  • Shen T, Wang T. Metabolic reprogramming in COVID-19. Int J Mol Sci. 2021;22(21):11475. doi: 10.3390/ijms222111475
  • Nardacci R, Colavita F, Castilletti C, et al. Evidences for lipid involvement in SARS-CoV-2 cytopathogenesis. Cell Death Dis. 2021;12(3):263.
  • Pavel AB, Glickman JW, Michels JR, et al. Th2/Th1 cytokine imbalance is associated with higher COVID-19 mortality risk. Front Genet. 2021;12:706902. doi: 10.3389/fgene.2021.706902
  • Grabacka M, Pierzchalska M, Plonka PM, et al. The role of ppar alpha in the modulation of innate immunity. Int J Mol Sci. 2021;22:10545. doi: 10.3390/ijms221910545
  • Pravica V, Asderakis A, Perrey C, et al. In vitro production of IFN-gamma correlates with CA repeat polymorphism in the human IFN-gamma gene. Eur J Immunogenet. 1999;26(1–3):1–3. doi: 10.1046/j.1365-2370.1999.00122.x
  • Nagarkatti R, Rao C, Rishi JP, et al. Association of IFNG gene polymorphism with asthma in the Indian population. J allergy clin immunol. 2002;110(3):410–412. doi: 10.1067/mai.2002.127859
  • Kaushik D, Bhandari R, Kuhad A. TLR4 as a therapeutic target for respiratory and neurological complications of SARS-CoV-2. Expert Opin Ther Targets. 2021;25(6):491–508. doi: 10.1080/14728222.2021.1907934
  • Ierodiakonou D, Postma DS, Koppelman GH, et al. E-cadherin gene polymorphisms in asthma patients using inhaled corticosteroids. Eur Respir J. 2011;38(5):1044–1052.
  • Kalfaoglu B, Almeida-Santos J, Tye CA, et al. T-cell hyperactivation and paralysis in severe COVID-19 infection revealed by single-cell analysis. Front Immunol. 2020;11:589380. doi: 10.3389/fimmu.2020.589380
  • Bai Y, McCoy JG, Levin EJ, et al. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature. 2015;524(7564):252–256.
  • Chong DLW, Rebeyrol C, José RJ, et al. ICAM-1 and ICAM-2 are differentially expressed and up-regulated on inflamed pulmonary epithelium, but neither ICAM-2 nor LFA-1. Front Immunol. 2021;12:691957. doi: 10.3389/fimmu.2021.691957
  • Othumpangat S, Noti JD, McMillen CM, et al. ICAM-1 regulates the survival of influenza virus in lung epithelial cells during the early stages of infection. Virology. 2016;487:85–94. doi: 10.1016/j.virol.2015.10.005
  • Bui TM, Wiesolek HL, Sumagin R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukocyte Biol. 2020 Sep;108(3):787–799. doi: 10.1002/JLB.2MR0220-549R
  • Kotteas EA, Boulas P, Gkiozos I, et al. The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis. Anticancer Res. 2014;34(9):4665–4672.
  • Suurbaar J, Moussiliou A, Tahar R, et al. ICAM-1-binding Plasmodium falciparum erythrocyte membrane protein 1 variants elicits opsonic-phagocytosis IgG responses in Beninese children. Sci Rep. 2022;12(1):12994.
  • Gripp KW, Bifeld E, Stabley DL, et al. A novel HRAS substitution (c.266C>G; p.S89C) resulting in decreased downstream signaling suggests a new dimension of RAS pathway dysregulation in human development. Am J Med Genet A. 2012;158(9):2106–2118.
  • Johnson DS, Chen YH. Ras family of small gtpases in immunity and inflammation. Curr Opin Pharmacol. 2012;12(4):458–463. doi: 10.1016/j.coph.2012.05.010
  • Sciacchitano S, Sacconi A, De Vitis C, et al. H-Ras gene takes part in the host immune response to COVID-19. Cell Death Discovery. 2021;7(1):158.
  • Khan S, Shafiei MS, Longoria C, et al. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife. 2021;10:e68563. doi: 10.7554/eLife.68563
  • Zheng M, Karki R, Williams EP, et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol. 2021;22(7):829–838.
  • Barbaro RP, MacLaren G, Boonstra PS, et al. Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the extracorporeal life support organization registry. Lancet. 2020;396(10257):1071–1078. doi: 10.1016/S0140-6736(20)32008-0
  • Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090. doi: 10.1016/j.ejphar.2020.173090
  • Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 2001;292(5519):1160–1164. doi: 10.1126/science.1059344
  • Grandori C, Cowley SM, James LP, et al. The Myc/Max/Mad Network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000;16(1):653–699. doi: 10.1146/annurev.cellbio.16.1.653
  • Nussinov R, Tsai CJ, Chakrabarti M, et al. A new view of Ras isoforms in cancers. Cancer Res. 2016;76(1):18–23.
  • Massó-Vallés D, Beaulieu ME, Soucek L. MYC, MYCL, and MYCN as therapeutic targets in lung cancer. Expert Opin Ther Targets. 2020;24(2):101–114. doi: 10.1080/14728222.2020.1724137
  • Bharadwaj S, Singh M, Kirtipal N, et al. SARS-CoV-2 and glutamine: SARS-CoV-2 triggered pathogenesis via metabolic reprograming of glutamine in host cells. Front Mol Biosci. 2021;7:627842. doi: 10.3389/fmolb.2020.627842
  • He WT, Musharrafieh R, Song G, et al. Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses. Nat Immunol. 2022;23(6):960–970.
  • Jiang K, Guo S, Zhang T, et al. Downregulation of Tlr4 by Mir-181a provides negative feedback regulation to lipopolysaccharide-Induced Inflammation. Front pharmacol. 2018;9:142. doi: 10.3389/fphar.2018.00142
  • Nakajima H, Sano H, Nishimura T, et al. Role of vascular cell adhesion molecule 1/very late activation antigen 4 and intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 interactions in antigen-induced eosinophil and T-cell recruitment into the tissue. J Exp Med. 1994;179(4):1145–1154. doi: 10.1084/jem.179.4.1145
  • Graziano F, Aimola G, Forlani G, et al. Reversible human immunodeficiency virus type-1 latency in primary human monocyte-derived macrophages induced by sustained M1 polarization. Sci Rep. 2018;8(1):14249. doi: 10.1038/s41598-018-32746-4
  • Zhang S, Yang Y, Shi Y. Characterization of human Scd2, an oligomeric desaturase with improved stability and enzyme activity by cross-linking in intact cells. Biochem J. 2005;388(1):135–142. doi: 10.1042/BJ20041554
  • Rodriguez-Perez N, Schiavi E, Frei R, et al. Altered fatty acid metabolism and reduced stearoyl-CoA desaturase activity in asthma. Allergy. 2017;72(12):1744–1752. doi: 10.1111/all.13180
  • Sokolowska M, Chen LY, Liu Y, et al. Dysregulation of lipidomic profile and antiviral immunity in response to hyaluronan in patients with severe asthma. J allergy clin immunol. 2017;139(4):1379–1383.
  • Zhang Z, Chen N, Liu JB, et al. Protective effect of resveratrol against acute lung injury induced by lipopolysaccharide via inhibiting the myd88-dependent Toll-like receptor 4 signaling pathway. Mol Med Rep. 2014;10(1):101–106. doi: 10.3892/mmr.2014.2226
  • Bals R. Lipopolysaccharide and the lung: a story of love and hate. Eur Respir J. 2005;25(5):776–777. doi: 10.1183/09031936.05.00025405
  • Liu CH, Chen Z, Chen K, et al. Lipopolysaccharide-mediated chronic inflammation promotes tobacco carcinogen-induced lung cancer and determines the efficacy of immunotherapy. Cancer Res. 2021;81(1):144–157. doi: 10.1158/0008-5472.CAN-20-1994
  • Tsikis ST, Fligor SC, Hirsch TI, et al. Lipopolysaccharide-induced murine lung injury results in long-term pulmonary changes and downregulation of angiogenic pathways. Sci Rep. 2022;12(1):10245.
  • Domscheit H, Hegeman MA, Carvalho N, et al. Molecular dynamics of lipopolysaccharide-induced lung injury in rodents. Front physiol. 2020;11:36. doi: 10.3389/fphys.2020.00036
  • Spanier AJ, Kahn RS, Kunselman AR, et al. Bisphenol a exposure and the development of wheeze and lung function in children through age 5 years. JAMA Pediatr. 2014;168(12):1131–1137. doi: 10.1001/jamapediatrics.2014.1397
  • Wang Y, Zhang S, Li F, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2020;48(D1):D1031–D1041.
  • Hu X, Geetha RV, Surapaneni KM, et al. Lung cancer induced by Benzo(A)Pyrene: ChemoProtective effect of sinapic acid in swiss albino mice. Saudi J Biol Sci. 2021;28(12):7125–7133.
  • Tseng YH, Chen YC, Yu AL, et al. Benzo[a]pyrene induces fibrotic changes and impairs differentiation in lung stem cells. Ecotoxicol Environ Saf. 2021;210:111892. doi: 10.1016/j.ecoenv.2021.111892
  • Wang H, Liu B, Chen H, et al. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ. 2023;45(1):21. doi: 10.1186/s41021-023-00278-1
  • Barnwal P, Vafa A, Afzal SM, et al. Benzo(a)pyrene induces lung toxicity and inflammation in mice: prevention by carvacrol. Hum Exp Toxicol. 2018;37(7):752–761. doi: 10.1177/0960327117735572
  • Ahmed FF, Reza MS, Sarker MS, et al. Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. PLoS One. 2022;17(4):e0266124.
  • Alanazi KM, Farah MA, Hor YY. Multi-targeted approaches and drug repurposing reveal possible SARS-CoV-2 inhibitors. Vaccines. 2021;10(1):24. doi: 10.3390/vaccines10010024
  • Auwul MR, Rahman MR, Gov E, et al. Bioinformatics and machine learning approach identifies potential drug targets and pathways in COVID-19. Brief Bioinform. 2021;22(5):bbab120. doi: 10.1093/bib/bbab120
  • Barcelo D. An environmental and health perspective for COVID-19 outbreak: meteorology and air quality influence, sewage epidemiology indicator, hospitals disinfection, drug therapies and recommendations. J Environ Chem Eng. 2020;8(4):104006. doi: 10.1016/j.jece.2020.104006
  • Boettler T, Newsome PN, Mondelli MU, et al. Care of patients with liver disease during the COVID-19 pandemic: EASL-ESCMID position paper. JHEP Rep. 2020;2(3):100113. doi: 10.1016/j.jhepr.2020.100113
  • Chen CC, Zhuang ZJ, Wu CW, et al. Venetoclax decreases the expression of the spike protein through amino acids Q493 and S494 in SARS-CoV-2. Cells. 2022;11(7):1924. doi: 10.3390/cells11121924
  • El-Aarag SA, Mahmoud A, ElHefnawi M. Identifying potential novel insights for COVID-19 pathogenesis and therapeutics using an integrated bioinformatics analysis of host transcriptome. Int j biol macromol. 2022;194:770–780. doi: 10.1016/j.ijbiomac.2021.11.124
  • Hasan MI, Rahman MH, Islam MB, et al. Systems biology and bioinformatics approach to identify blood based signatures molecules and drug targets of patient with COVID-19. IMU. 2022;28:100840. doi: 10.1016/j.imu.2021.100840
  • Huang Y, Zheng WJ, Ni Y-S, et al. Therapeutic mechanism of Toujie Quwen granules in COVID-19 based on network pharmacology. BioData Min. 2020;13(1):1–21.
  • Jose S, Gupta M, Sharma U, et al. Potential of phytocompounds from Brassica oleracea targeting S2-domain of SARS-CoV-2 spike glycoproteins: structural and molecular insights. J Mol Struct. 2022;1254:132369. doi: 10.1016/j.molstruc.2022.132369
  • Lalmuanawma S, Hussain J, Chhakchhuak L. Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review. Chaos, Solitons & Fractals. 2020;139:110059. doi: 10.1016/j.chaos.2020.110059
  • Sanchez-Burgos L, Gómez-López G, Al-Shahrour F, et al. An in silico analysis identifies drugs potentially modulating the cytokine storm triggered by SARS-CoV-2 infection. Sci Rep. 2022;12(1):1–10.
  • Serafin MB, Bottega A, Foletto VS, et al. Drug repositioning is an alternative for the treatment of coronavirus COVID-19. Int J Antimicrob Agents. 2020;55(6):105969. doi: 10.1016/j.ijantimicag.2020.105969
  • Siminea N, Popescu V, Sanchez Martin JA, et al. Network analytics for drug repurposing in COVID-19. Brief Bioinform. 2022;23(1):bbab490.
  • Taz TA, Ahmed K, Paul BK, et al. Identification of biomarkers and pathways for the SARS-CoV-2 infections that make complexities in pulmonary arterial hypertension patients. Brief Bioinform. 2021;22(2):1451–1465. doi: 10.1093/bib/bbab026
  • Turilli ES, Lualdi M, Fasano M. Looking at COVID-19 from a systems biology perspective. Biomolecules. 2022;12(2):188. doi: 10.3390/biom12020188
  • Venturini E, Montagnani C, Garazzino S, et al. Treatment of children with COVID-19: position paper of the Italian society of pediatric infectious disease. Ital J Pediatr. 2020;46(1):1–11.
  • Husain A, Byrareddy SN. Rapamycin as a potential repurpose drug candidate for the treatment of COVID-19. Chem Biol Interact. 2020;331:109282. doi: 10.1016/j.cbi.2020.109282
  • Patocka J, Kuca K, Oleksak P, et al. Rapamycin: drug repurposing in SARS-CoV-2 infection. Pharmaceuticals. 2021;14(3):217. doi: 10.3390/ph14030217
  • Mullen PJ, Garcia G, Purkayastha A, et al. SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nat Commun. 2021;12(1):1–10.
  • Moloney PB, Delanty N. Stick or twist: Everolimus for seizures in tuberous sclerosis complex during the COVID-19 pandemic. Seizure. 2021;91:271. doi: 10.1016/j.seizure.2021.06.035
  • de Pablo A, Santos F, Sánchez de la Nieta MD, et al. Recommendations on the use of everolimus in lung transplantation. Transplantation Rev. 2013;27(2):9–16. doi: 10.1016/j.trre.2012.11.001
  • Holdaas H, Midtvedt K, Åsberg A. A drug safety evaluation of everolimus in kidney transplantation. Expert Opin Drug Saf. 2012;11(6):1013–1022. doi: 10.1517/14740338.2012.731929
  • Yee ML, Tan HH. Use of everolimus in liver transplantation. World J Hepatol. 2017;9(27):990–998. doi: 10.4254/wjh.v9.i23.990
  • Maiese K. The Mechanistic Target of Rapamycin (mTOR): novel considerations as an antiviral treatment. Curr Neurovasc Res. 2020;17(3):332–337. doi: 10.2174/18755739MTA2sMTExy
  • Zheng Y, Li R, Liu S. Immunoregulation with mTOR inhibitors to prevent COVID-19 severity: a novel intervention strategy beyond vaccines and specific antiviral medicines. J med virol. 2020;92(9):1495–1500. doi: 10.1002/jmv.26009
  • Fagone P, Ciurleo R, Lombardo SD, et al. Transcriptional landscape of SARS-CoV-2 infection dismantles pathogenic pathways activated by the virus, proposes unique sex-specific differences and predicts tailored therapeutic strategies. Autoimmun Rev. 2020;19:102571. doi: 10.1016/j.autrev.2020.102571
  • Yarmohammadi A, Yarmohammadi M, Fakhri S, et al. Targeting pivotal inflammatory pathways in COVID-19: a mechanistic review. Eur J Pharmacol. 2020;2020:173620. doi: 10.1016/j.ejphar.2020.173620
  • Karsulovic C, Lopez M, Tempio F, et al. MTORC inhibitor sirolimus deprograms monocytes in “Cytokine storm” in SARS-CoV2 secondary hemophagocytic lymphohistiocytosis- like syndrome. Clin Immunol. 2020;218:108539. doi: 10.1016/j.clim.2020.108539
  • Ramaiah MJ. MTOR inhibition and P53 activation, MicroRNAs: the possible therapy against pandemic COVID-19. Gene Rep. 2020;20:100765. doi: 10.1016/j.genrep.2020.100765
  • Huang C-T, Hung C-Y, Chen T-C, et al. Rapamycin adjuvant and exacerbation of severe influenza in an experimental mouse model. Sci Rep. 2017;7(1):4136.
  • Sargiacomo C, Sotgia F, Lisanti MP. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging. 2020;12(8):6511–6517. doi: 10.18632/aging.103001
  • Wood SC, Bushar G, Tesfamariam B. Inhibition of mammalian target of rapamycin modulates expression of adhesion molecules in endothelial cells. Toxicol Lett. 2006;165(3):242–249. doi: 10.1016/j.toxlet.2006.04.009
  • Chen L, Xu B, Liu L, et al. Both mTORC1 and mTORC2 are involved in the regulation of cell adhesion. Oncotarget. 2015;6(9):7136–7150. doi: 10.18632/oncotarget.3044
  • Sawhney RS, Cookson MM, Sharma B, et al. Autocrine transforming growth factor alpha regulates cell adhesion by multiple signaling via specific phosphorylation sites of p70S6 kinase in colon cancer cells. J Biol Chem. 2004;279(45):47379–47390. doi: 10.1074/jbc.M402031200
  • Wang C, Qin L, Manes TD, et al. Rapamycin antagonizes TNF induction of VCAM-1 on endothelial cells by inhibiting mTORC2. J Exp Med. 2014;211(3):395–404. doi: 10.1084/jem.20131125
  • Caly L, Druce JD, Catton MG, et al. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787. doi: 10.1016/j.antiviral.2020.104787
  • Choudhary R, Sharma A. Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance. New Microbes New Infect. 2020;35:100684. doi: 10.1016/j.nmni.2020.100684
  • Gupta D, Sahoo AK, Singh A. Ivermectin: potential candidate for the treatment of Covid 19. Braz J Infect Dis. 2020;24(4):369–371. doi: 10.1016/j.bjid.2020.06.003
  • Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–1045.
  • Sheu CC, Chang WA, Tsai MJ, et al. Bioinformatic analysis of next-generation sequencing data to identify dysregulated genes in fibroblasts of idiopathic pulmonary fibrosis. Int J Mol Med. 2019;43(4):1643–1656. doi: 10.3892/ijmm.2019.4086
  • Lieberman NA, Peddu V, Xie H, et al. In vivo antiviral host transcriptional response to SARS-CoV-2 by viral load, sex, and age. PLoS Biol. 2020;18(9):e3000849.
  • dePianto DJ, Chandriani S, Abbas AR, et al. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax. 2015;70(1):48–56.
  • Kiyotani K, Toyoshima Y, Nemoto K, et al. Bioinformatic prediction of potential T cell epitopes for SARS-CoV-2. J Hum Genet. 2020;65(7):569–575. doi: 10.1038/s10038-020-0771-6
  • McGonagle D, Sharif K, O’Regan A, et al. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;19(6):102537. doi: 10.1016/j.autrev.2020.102537
  • Sohrabi C, Alsafi Z, O’Neill N, et al. World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;76:71–76. doi: 10.1016/j.ijsu.2020.02.034
  • Li Y, Yao J, Han C, et al. Quercetin, Inflammation and Immunity. Nutrients. 2016;8(3):167.
  • Liu X, Raghuvanshi R, Ceylan FD, et al. Quercetin and its metabolites inhibit recombinant human Angiotensin-Converting Enzyme 2 (ACE2) activity. J Agric Food Chemistry. 2020;68(47):13982–13989. doi: 10.1021/acs.jafc.0c06248
  • Zheng W, Wu H, Wang T, et al. Quercetin for COVID-19 and dengue co-infection: a potential therapeutic strategy of targeting critical host signal pathways triggered by SARS-CoV-2 and DENV. Brief Bioinform. 2021;22(6):bbab199. doi: 10.1093/bib/bbab199
  • Ahamad MM, Aktar S, Rashed-Al-Mahfuz M, et al. A machine learning model to identify early stage symptoms of SARS-Cov-2 infected patients. Expert Syst Appl. 2020;160:113661. doi: 10.1016/j.eswa.2020.113661
  • Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21(2):271–282.
  • Drilon A, Siena S, Dziadziuszko R, et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21(2):261–270.
  • Peralta-Garcia A, Torrens-Fontanals M, Stepniewski TM, et al. Entrectinib—a SARS-CoV-2 inhibitor in human lung tissue (HLT) cells. Int J Mol Sci. 2021;22(24):13592.
  • Jeitany M, Leroy C, Tosti P, et al. Inhibition of DDR1-Bcr signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer. EMBO Mol Med. 2018;10:e7918. doi: 10.15252/emmm.201707918
  • Weigel MT, Rath K, Alkatout I, et al. Nilotinib in combination with carboplatin and paclitaxel is a candidate for ovarian cancer treatment. Oncology. 2014;87(4):232–245.
  • Sacha T, Saglio G. Nilotinib in the treatment of chronic myeloid leukemia. Future Oncol. 2019;15(9):953–965. doi: 10.2217/fon-2018-0468
  • Heo SK, Noh EK, Kim JY, et al. Targeting c-KIT (CD117) by dasatinib and radotinib promotes acute myeloid leukemia cell death. Sci Rep. 2017;7(1):1–12.
  • Heo SK, Noh EK, Seo HJ, et al. Radotinib inhibits multiple myeloma cell proliferation via suppression of STAT3 signaling. PLoS One. 2022;17(5):e0265958.
  • Kim SY, Son M, Choi H, et al. Development of a broad-spectrum antiviral agent with activity against SARS-CoV-2. Sci Rep. 2021;11:20752. doi: 10.1038/s41598-021-00247-0
  • Novak J, Rimac H, Kandagalla S, et al. Proposition of a new allosteric binding site for potential SARS-CoV-2 3CL protease inhibitors by utilizing molecular dynamics simulations and ensemble docking. J Biomol Struct Dynamics. 2021;1–14. doi: 10.1080/07391102.2021.1907223
  • Chen Q, Xia S, Sui H, et al. Identification of hub genes associated with COVID-19 and idiopathic pulmonary fibrosis by integrated bioinformatics analysis. PLoS One. 2022;17(1):e0262737. doi: 10.1371/journal.pone.0262737
  • Gentile M, Petrungaro A, Uccello G, et al. Venetoclax for the treatment of chronic lymphocytic leukemia. Expert Opin Investig Drugs. 2017;26(11):1307–1316.
  • Korycka-Wolowiec A, Wolowiec D, Kubiak-Mlonka A, et al. Venetoclax in the treatment of chronic lymphocytic leukemia. Expert Opinion on Drug Metabolism & Toxicology. 2019;15(5):353–366.
  • Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311–322.
  • Beck BR, Shin B, Choi Y, et al. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Computat Struct Biotechnol J. 2020;18:784–790. doi: 10.1016/j.csbj.2020.03.025
  • Juárez-Salcedo LM, Desai V, Dalia S. Venetoclax: Evidence to Date and Clinical Potential. Drugs Context. 2019;8:1–13. doi: 10.7573/dic.2125378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.