122
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigating mental workload caused by NDRTs in highly automated driving with deep learning

ORCID Icon &
Pages 372-380 | Received 25 Jun 2023, Accepted 25 Oct 2023, Published online: 19 Jan 2024

References

  • Alexander AL, Wickens CD, Merwin DH. 2005. Perspective and Coplanar Cockpit Displays of Traffic Information: implications for Maneuver Choice, Flight Safety, and Mental Workload. Int J Aviat Psychol. 15(1):1–21. doi:10.1207/s15327108ijap1501_1.
  • Almogbel MA, Dang AH, Kameyama W. 2019. Cognitive Workload Detection from Raw EEG-Signals of Vehicle Driver using Deep Learning. In 2019 21st International Conference on Advanced Communication Technology (ICACT). p. 1–6. doi:10.23919/ICACT.2019.8702048.
  • Bazilinskyy P, Petermeijer SM, Petrovych V, Dodou D, de Winter JCF. 2018. Take-over requests in highly automated driving: a crowdsourcing survey on auditory, vibrotactile, and visual displays. Transport Res Part F. 56:82–98. doi:10.1016/j.trf.2018.04.001.
  • Borghini G, Astolfi L, Vecchiato G, Mattia D, Babiloni F. 2014. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci Biobehav Rev. 44:58–75. PMID: 23116991. doi:10.1016/j.neubiorev.2012.10.003.
  • Brookings JB, Wilson GF, Swain CR. 1996. Psychophysiological responses to changes in workload during simulated air traffic control. Biol Psychol. 42(3):361–377. PMID: 8652753. doi:10.1016/0301-0511(95)05167-8.
  • Craik A, He Y, Contreras-Vidal JL. 2019. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng. 16(3):031001. PMID: 30808014. doi:10.1088/1741-2552/ab0ab5.
  • Das Chakladar D, Dey S, Roy PP, Dogra DP. 2020. EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm. Biomed Signal Process Control. 60:101989. doi:10.1016/j.bspc.2020.101989.
  • Fernández T, Harmony T, Rodríguez M, Bernal J, Silva J, Reyes A, Marosi E. 1995. EEG activation patterns during the performance of tasks involving different components of mental calculation. Electroencephalogr Clin Neurophysiol. 94(3):175–182. PMID: 7536152. doi:10.1016/0013-4694(94)00262-J.
  • Fournier LR, Wilson GF, Swain CR. 1999. Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks: manipulations of task difficulty and training. Int J Psychophysiol. 31(2):129–145. PMID: 9987059. doi:10.1016/S0167-8760(98)00049-X.
  • Galy E. 2018. Consideration of several mental workload categories: perspectives for elaboration of new ergonomic recommendations concerning shiftwork. Theor Issues Ergonom Sci. 19(4):483–497. doi:10.1080/1463922X.2017.1381777.
  • Gold C, Damböck D, Lorenz L, Bengler K. 2013. “Take over!” How long does it take to get the driver back into the loop? Proc Hum Factors Ergonom Soc Annu Meeting. 57(1):1938–1942. doi:10.1177/1541931213571433.
  • Harmony T, Fernández T, Silva J, Bernal J, Díaz-Comas L, Reyes A, Marosi E, Rodríguez M, Rodríguez M. 1996. EEG delta activity: an indicator of attention to internal processing during performance of mental tasks. Int J Psychophysiol. 24(1-2):161–171. PMID: 8978441. doi:10.1016/S0167-8760(96)00053-0.
  • Hart SG, Staveland LE. 1988. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In: Hancock PA, Meshkati N, editors. Human mental workload. Vol. 52. North-Holland: Advances in psychology. p. 139–183.
  • Jawabri KH, Sharma S. 2023. Physiology, Cerebral Cortex Functions. In StatPearls. Treasure Island (FL): statPearls Publishing.
  • Jiao Z, Gao X, Wang Y, Li J, Xu H. 2018. Deep Convolutional Neural Networks for mental load classification based on EEG data. Pattern Recognit. 76:582–595. doi:10.1016/j.patcog.2017.12.002.
  • Kabilmiharbi N, Kamaliana Khamis N, Azila Noh N. 2022. Commonly Used Assessment Method to Evaluate Mental Workload for Multiple Driving Distractions: a Systematic Review. Iran J Public Health. 51(3):482–494. PMID: 35865045. doi:10.18502/ijph.v51i3.8924.
  • Kamaliana K, Deros B, Schramm D, Hesse B, Nuawi M, Ismail F. 2016. Subjective and indirect methods to observe driver’s drowsiness and alertness: an overview. J Eng Sci Technol. 11:28–39.
  • Käthner I, Wriessnegger SC, Müller-Putz GR, Kübler A, Halder S. 2014. Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain–computer interface. Biol Psychol. 102:118–129. PMID: 25088378. doi:10.1016/j.biopsycho.2014.07.014.
  • Ke Y, Jiang T, Liu S, Cao Y, Jiao X, Jiang J, Ming D. 2021. Cross-Task Consistency of Electroencephalography-Based Mental Workload Indicators: comparisons Between Power Spectral Density and Task-Irrelevant Auditory Event-Related Potentials. Front Neurosci. 15:703139. PMID: 34867143. doi:10.3389/fnins.2021.703139.
  • Kosti MV, Georgiadis K, Adamos DA, Laskaris N, Spinellis D, Angelis L. 2018. Towards an affordable brain computer interface for the assessment of programmers’ mental workload. Int J Hum Comput Stud. 115:52–66. doi:10.1016/j.ijhcs.2018.03.002.
  • LeCun Y, Kavukcuoglu K, Farabet C. 2010. Convolutional networks and applications in vision. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems. p. 253–256.
  • Lemm S, Blankertz B, Dickhaus T, Müller K-R. 2011. Introduction to machine learning for brain imaging. Neuroimage. 56(2):387–399. PMID: 21172442. doi:10.1016/j.neuroimage.2010.11.004.
  • Lin C-T, Ko L-W, Shen T-K. 2009. Computational intelligent brain computer interaction and its applications on driving cognition. IEEE Comput Intell Mag. 4(4):32–46. doi:10.1109/MCI.2009.934559.
  • Matthews G, Reinerman-Jones LE, Barber DJ, Abich J. 2015. The Psychometrics of Mental Workload: multiple Measures Are Sensitive but Divergent. Hum Factors. 57(1):125–143. PMID: 25790574. doi:10.1177/0018720814539505.
  • Mok B, Johns M, Lee KJ, Miller D, Sirkin D, Ive P, Ju W. 2015. Emergency, Automation Off: unstructured Transition Timing for Distracted Drivers of Automated Vehicles. In 2015 IEEE 18th International Conference on Intelligent Transportation Systems. p. 2458–2464.
  • Müller AL. 2020. [Auswirkungen von naturalistischen fahrfremden Tätigkeiten während hochautomatisierter Fahrt ]. [[Ph.D. Thesis]]. [Darmstadt]: Technische Universität.
  • Müller AL, Fernandes-Estrela N, Hetfleisch R, Zecha L, Abendroth B. 2021. Effects of non-driving related tasks on mental workload and take-over times during conditional automated driving. Eur Transp Res Rev. 13(1):16. doi:10.1186/s12544-021-00475-5.
  • Pakdamanian E, Hu E, Sheng S, Kraus S, Heo S, Feng L. 2022. Enjoy the Ride Consciously with CAWA: context-Aware Advisory Warnings for Automated Driving. In: Proceedings of the 14th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. New York, NY, USA: Association for Computing Machinery. (AutomotiveUI ‘22). p. 75–85. doi:10.1145/3543174.3546835.
  • Radlmayr J, Weinbeer V, Löber C, Farid M, Bengler K. 2018. How Automation Level and System Reliability Influence Driver Performance in a Cut-In Situation. In: stanton NA, editor. Advances in Human Aspects of Transportation. Cham: springer International Publishing. (Advances in Intelligent Systems and Computingp. 684–694.
  • Recarte MA, Nunes LM. 2003. Mental workload while driving: effects on visual search, discrimination, and decision making. J Exp Psychol Appl. 9(2):119–137. PMID: 12877271. doi:10.1037/1076-898X.9.2.119.
  • SAE. 2021. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. SAE DocumentJ3016_202104, Ver. 4. SAE International. doi:10.4271/J3016_202104
  • Sciaraffa N, Aricò P, Borghini G, Flumeri GD, Florio AD, Babiloni F. 2019. On the Use of Machine Learning for EEG-Based Workload Assessment: algorithms Comparison in a Realistic Task. In: longo L, Leva MC, editors. Human Mental Workload: models and Applications. Cham: Springer International Publishing. (Communications in Computer and Information Science). p. 170–185.
  • Shahini F, Zahabi M. 2022. Effects of levels of automation and non-driving related tasks on driver performance and workload: a review of literature and meta-analysis. Appl Ergon. 104:103824. PMID: 35724471. doi:10.1016/j.apergo.2022.103824.
  • Shakouri M, Ikuma LH, Aghazadeh F, Nahmens I. 2018. Analysis of the sensitivity of heart rate variability and subjective workload measures in a driving simulator: the case of highway work zones. Int J Ind Ergon. 66:136–145. doi:10.1016/j.ergon.2018.02.015.
  • Smith ME, Gevins A, Brown H, Karnik A, Du R. 2001. Monitoring Task Loading with Multivariate EEG Measures during Complex Forms of Human-Computer Interaction. Hum Factors. 43(3):366–380. PMID: 11866193. doi:10.1518/001872001775898287.
  • Tao D, Tan H, Wang H, Zhang X, Qu X, Zhang T. 2019. A Systematic Review of Physiological Measures of Mental Workload. Int J Environ Res Public Health. 16(15):2716. PMID: 31366058. doi:10.3390/ijerph16152716.
  • Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Müller-Putz G, Scherer R. 2012. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. Neuroimage. 63(3):1203–1211. PMID: 22906791. doi:10.1016/j.neuroimage.2012.08.019.
  • Wang Y-K, Chen S-A, Lin C-T. 2014. An EEG-based brain–computer interface for dual task driving detection. Neurocomputing. 129:85–93. doi:10.1016/j.neucom.2012.10.041.
  • Wickens CD. 2002. Multiple resources and performance prediction. Theor Issues Ergonom Sci. 3(2):159–177. doi:10.1080/14639220210123806.
  • Young KL, Regan MA, Hammer M. 2003. Driver distraction: a review of the literature.
  • Young MS, Brookhuis KA, Wickens CD, Hancock PA. 2015. State of science: mental workload in ergonomics. Ergonomics. 58(1):1–17. PMID: 25442818. doi:10.1080/00140139.2014.956151.
  • Zangi N, Srour-Zreik R, Ridel D, Chasidim H, Borowsky A. 2022. Driver distraction and its effects on partially automated driving performance: a driving simulator study among young-experienced drivers. Accid Anal Prev. 166:106565. PMID: 35032704. doi:10.1016/j.aap.2022.106565.
  • Zhang P, Wang X, Zhang W, Chen J. 2019. Learning Spatial–Spectral–Temporal EEG Features With Recurrent 3D Convolutional Neural Networks for Cross-Task Mental Workload Assessment. IEEE Trans Neural Syst Rehabil Eng. 27(1):31–42. PMID: 30507536. doi:10.1109/TNSRE.2018.2884641.
  • Zhao H, Ma J, Zhang Y, Chang R. 2022. Mental workload accumulation effect of mobile phone distraction in L2 autopilot mode. Sci Rep. 12(1):16856. PMID: 36207431. doi:10.1038/s41598-022-17419-1.
  • Zheng W-L, Lu B-L. 2015. Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Trans Auton Mental Develop. 7(3):162–175. doi:10.1109/TAMD.2015.2431497.
  • Zhou Y, Huang S, Xu Z, Wang P, Wu X, Zhang D. 2022. Cognitive Workload Recognition Using EEG Signals and Machine Learning: a Review. IEEE Trans Cogn Dev Syst. 14(3):799–818. PMID: 36682107. doi:10.1109/TCDS.2021.3090217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.