137
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Validated numerical unrestrained occupant-seat crash scenarios for high-speed trains integrating experimental, computational, and inverse methods

, , , , , , & show all
Pages 640-648 | Received 29 Jun 2023, Accepted 23 Mar 2024, Published online: 05 Apr 2024

References

  • Ambrósio J, Carvalho M, Milho J, Escalante S, Martín R. 2022. A validated railway vehicle interior layout with multibody dummies and finite element seats models for crash analysis. Multibody Syst Dyn. 54(2):179–212. doi:10.1007/s11044-021-09794-w.
  • Barbat S, Fu Y, Zhan Z, Yang RJ, Gehre C. 2013. Objective rating metric for dynamic systems. International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV), Seoul, South Korea.
  • BS EN 15227. 2020. Railway applications – crashworthiness requirements for rail vehicles.
  • Carvalho M, Ambrosio J, Milho J. 2011. Implications of the inline seating layout on the protection of occupants of railway coach interiors. Int J Crashworthiness. 16(5):557–568. doi:10.1080/13588265.2011.611399.
  • Carvalho M, Milho J, Ambrosio J, Ramos N. 2017. Railway occupant passive safety improvement by optimal design. Int J Crashworthiness. 22(6):624–634. doi:10.1080/13588265.2016.1221332.
  • Deng G, Gan S, Chen W, Zhou Q, Peng Y, Cui T, Nie B. 2021. Effect of simulated muscle activation level on driver neck response in frontal motor vehicle crashes (No. 2021-01-5008). SAE Technical Paper. doi:10.4271/2021-01-5008.
  • Deng G, Peng Y, Hou L, Li Z, Li B, Yu C, Simms C. 2022. A novel simplified FE rail vehicle model in longitudinal and lateral collisions. Machines. 10(12):1214. doi:10.3390/machines10121214.
  • Deng G, Peng Y, Li B, Wang K, Simms C. 2023. Assessment of high-speed train interactions with containment walls in post-derailment collisions. 29th International Conference on Computational & Experimental Engineering and Sciences (ICCES2023). doi:10.1007/978-3-031-44947-5_77.
  • Deng G, Peng Y, Yan C, Wen B. 2021. Running safety evaluation of a 350 km/h high-speed freight train negotiating a curve based on the arbitrary Lagrangian-Eulerian method. P I Mech Eng F-J Rai. 235(9):1143–1157. doi:10.1177/0954409720986283.
  • Deng G, Simms C, Xu T, Peng Y, Li Z, Hou L, Liu Z. 2022. Occupant head injury assessment for bullet trains using dummy crash tests. 2022 International Research Council on the Biomechanics of Injury Europe Conference (IRCOBI).
  • Deng G, Wang F, Yu C, Peng Y, Xu H, Li Z, Hou L, Wang Z. 2022. Assessment of standing passenger traumatic brain injury caused by ground impact in subway collisions. Accid Anal Prev. 166:106547. doi:10.1016/j.aap.2021.106547.
  • Esat V, Acar BS. 2012. Effects of table design in railway carriages on pregnant occupant safety. Int J Crashworthiness. 17(3):337–343. doi:10.1080/13588265.2012.664009.
  • Forman JL, Lopez-Valdes FJ, Duprey S, Bose D, Del Pozo de Dios E, Subit D, Gillispie T, Crandall JR, Segui-Gomez M. 2015. The tolerance of the human body to automobile collision impact–a systematic review of injury biomechanics research, 1990–2009. Accid Anal Prev. 80:7–17. doi:10.1016/j.aap.2015.03.004.
  • Hault-Dubrulle A, Robache F, Drazetic P, Morvan H, Landsheere C, Duhem F. 2013. Analysis of train driver protection in rail collisions: part I. Evaluation of injury outcome for train driver in desk impact. Int J Crashworthiness. 18(2):183–193. doi:10.1080/13588265.2013.769484.
  • Hault-Dubrulle A, Robache F, Drazetic P, Morvan H, Landsheere C, Luc O. 2013. Analysis of train driver protection in rail collisions: part II. Design of a desk with improved crashworthiness performance. Int J Crashworthiness. 18(2):194–205. doi:10.1080/13588265.2013.769485.
  • Hou L, Peng Y, Sun D. 2020. Neck injury mechanisms in train collisions: dynamic analysis and data mining of the driver impact injury. Accid Anal Prev. 146:105725. doi:10.1016/j.aap.2020.105725.
  • Hou L, Zhang H, Peng Y, Wang S, Yao S, Li Z, Deng G. 2021. An integrated multi-objective optimization method with application to train crashworthiness design. Struct Multidisc Optim. 63(3):1513–1532. doi:10.1007/s00158-020-02758-2.
  • Hu J, Flannagan CA, Bao S, McCoy RW, Siasoco KM, Barbat S. 2015. Integration of active and passive safety technologies—a method to study and estimate field capability. Stapp Car Crash J. 59:269–296. doi:10.4271/2015-22-0010.
  • International Union of Railways (UIC). 2020. UIC safety report. https://safetydb.uic.org/IMG/pdf/sdb_report_2020_public.pdf.
  • ISO 3386-1. 1986. Polymeric materials, cellular flexible–determination of stress–strain characteristic in compression–part 1 low–density materials. Geneva: ISO International.
  • Jing L, Liu K, Wang C. 2021. Recent advances in the collision passive safety of trains and impact biological damage of drivers and passengers. Explosion Shock Waves. 41(12):1–33. doi:10.11883/bzycj-2021-0330.
  • Li Z, Ma W, Yao S, Xu P, Hou L, Deng G. 2021. A machine learning based optimization method towards removing undesired deformation of energy-absorbing structures. Struct Multidisc Optim. 64(2):919–934. doi:10.1007/s00158-021-02896-1.
  • LSTC. 2014. LSTC_NCAC hybrid III 50th dummy.
  • Nie B, Crandall JR, Panzer MB. 2017. Computational investigation of the effects of knee airbag design on the interaction with occupant lower extremity in frontal and oblique impacts. Traffic Inj Prev. 18(2):207–215. doi:10.1080/15389588.2016.1219728.
  • Peng Y, Hou L, Yang M, Tian H. 2017. Investigation of the train driver injuries and the optimization design of driver workspace during a collision. P I Mech Eng F-J Rai. 231(8):902–915. doi:10.1177/0954409716647418.
  • Peng Y, Wang S, Yao S, Xu P. 2017. Crashworthiness analysis and optimization of a cutting-style energy absorbing structure for subway vehicles. Thin Wall Struct. 120:225–235. doi:10.1016/j.tws.2017.09.006.
  • Scholes A, Lewis JH. 1993. Development of crashworthiness for railway vehicle structures. P I Mech Eng F-J Rai. 207(1):1–16. doi:10.1243/PIME_PROC_1993_207_222_02.
  • Severson KJ, Parent DP. 2006. Train-to-train impact test of crash energy management passenger rail equipment: occupant experiments. ASME International Mechanical Engineering Congress and Exposition, Vol. 47780; p. 75–86. doi:10.1115/IMECE2006-14420.
  • Simons JW, Kirkpatrick SW. 1999. High-speed passenger train crashworthiness and occupant survivability. Int J Crashworthiness. 4(2):121–132. doi:10.1533/cras.1999.0095.
  • Suzuki D, Nakai K, Enami S, Okino T, Takano J, Palacin R. 2015. Proposal of simulation method for behaviour analysis of passengers on longitudinal seating in railway collision. International Research Council on the Biomechanics of Injury Europe Conference (IRCOBI).
  • TNO. 2013. Model manual-version 7.5.
  • Tyrell D, Severson KJ, Marquis BP. 1995. Analysis of occupant protection strategies in train collisions. ASME International Mechanical Engineering Congress & Exposition.
  • Tyrell D, Zolock J, VanIngen-Dunn C. 2000. Rail passenger equipment collision tests: analysis of occupant protection measurements. ASME International Mechanical Engineering Congress & Exposition. doi:10.1115/IMECE2000-2140.
  • Tyrell D, Zolock J, VanIngen-Dunn C. 2002. Train-to-train impact test: occupant protection experiments. ASME International Mechanical Engineering Congress & Exposition. doi:10.1115/IMECE2002-39611.
  • Wei L, Zhang L. 2018. Evaluation and improvement of crashworthiness for high-speed train seats. Int J Crashworthiness. 23(5):561–568. doi:10.1080/13588265.2017.1367354.
  • Yang W, Xie S, Li H, Chen Z. 2019. Design and injury analysis of the seated occupant protection posture in train collision. Safety Sci. 117:263–275. doi:10.1016/j.ssci.2019.04.028.
  • Yao S, Li Z, Yan J, Xu P, Peng Y. 2018. Analysis and parameters optimization of an expanding energy-absorbing structure for a rail vehicle coupler. Thin Wall Struct. 125:129–139. doi:10.1016/j.tws.2018.01.011.
  • Yoganandan N, Nahum AM, Melvin JW. 2014. Accidental injury: biomechanics and prevention. New York (NY): Springer.
  • Yoganandan N, Pintar FA, Zhang J, Baisden JL. 2009. Physical properties of the human head: mass, center of gravity and moment of inertia. J Biomech. 42(9):1177–1192. doi:10.1016/j.jbiomech.2009.03.029.
  • Yu C, Wang F, Wang B, Li G, Li F. 2020. A computational biomechanics human body model coupling finite element and multibody segments for assessment of head/brain injuries in car-to-pedestrian collisions. Int J Environ Res Public Health. 17(2):492. doi:10.3390/ijerph17020492.
  • Yu Z, Zheng S, Liu K, Gao Z, Zhao L, Jing L. 2023. A modified finite element dummy model of Chinese adult male used for train collision simulations. Int J Rail Transp. 1–24. doi:10.1080/23248378.2023.2201585.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.