129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fractional Maxwell viscoelastic model to explain dynamic magneto-viscoelastic properties of an isotropic magnetorheological elastomer containing flake-shaped magnetic particles

ORCID Icon & ORCID Icon
Pages 346-357 | Received 04 Apr 2023, Accepted 07 Aug 2023, Published online: 21 Aug 2023

References

  • Crawford, R. J.; Martin, P. Plastics Engineering, 3rd ed.; Butterworth-Heinemann: Cambridge, MA, 1998.
  • Lakes, R. S. Viscoelastic Solids, 1st ed.; CRC press: Boca Raton, FL, 1999.
  • Lewandowski, R.; Choryczewski, B. Identification of the Parameters of the Kelvin–Voigt and the Maxwell Fractional Models, Used to Modeling of Viscoelastic Dampers. Comput. Struct. 2010, 88(1–2), 1. DOI: 10.1016/J.COMPSTRUC.2009.09.001.
  • Zener, C. Elasticity and Anelasticity of Metals, 1st ed.; University of Chicago Press: Chicago, IL, 1948.
  • Zhu, G.; Xiong, Y. P.; Daley, S.; Shenoi, R. A. Analysis and Design of Marine Structures V, 1st ed.; CRC Press: Boca Raton, FL, 2015; pp 197–204.
  • Pritz, T. Analysis of Four-Parameter Fractional Derivative Model of Real Solid Materials. J. Sound Vib. 1996, 195(1), 103–115. DOI: 10.1006/jsvi.1996.0406.
  • Xu, Z.-D.; Liao, Y. X.; Ge, T.; Xu, C. Experimental and Theoretical Study of Viscoelastic Dampers with Different Matrix Rubbers. J. Eng. Mech. 2016, 142(8), 142. DOI: 10.1061/(ASCE)em.1943-7889.0001101.
  • Agirre-Olabide, I.; Elejabarrieta, M. J. Maximum Attenuation Variability of Isotropic Magnetosensitive Elastomers. Polym. Test. 2016, 54, 104–113. DOI: 10.1016/j.polymertesting.2016.06.021.
  • Guo, F.; Du, C.; Li, R.-P. Viscoelastic Parameter Model of Magnetorheological Elastomers Based on Abel Dashpot. Adv. Mech. Eng. 2014, 6, 629386. DOI: 10.1155/2014/629386.
  • Zhu, G.; Xiong, Y.; Li, Z.; Li, M. A Fractional-Order Model on the Dynamic Mechanical Behaviour of Magnetorheological Elastomers. Smart Mater. Struct. 2020, 29(2), 025020. DOI: 10.1088/1361-665X/ab62de.
  • Nam, T. H.; Petríková, I.; Marvalová, B. Experimental Characterisation and Viscoelastic Modelling of Isotropic and Anisotropic Magnetorheological Elastomers. Polym. Test. 2020, 81, 106272. DOI: 10.1016/j.polymertesting.2019.106272.
  • Xiao, R.; Sun, H.; Chen, W. An Equivalence Between Generalised Maxwell Model and Fractional Zener Model. Mech. Mater. 2016, 100, 148–153. DOI: 10.1016/j.mechmat.2016.06.016.
  • Jolly, M. R.; Carlson, J. D.; Muñoz, B. C.A Model of the Behaviour of Magnetorheological Materials. Smart Mater. Struct. 1996, 5(5), 607–614. DOI: 10.1088/0964-1726/5/5/009.
  • Payne, A. R. The Dynamic Properties of Carbon Black-Loaded Natural Rubber Vulcanizates. Part I. J. Appl. Polym. Sci. 1962, 6(19), 57–63. DOI: 10.1002/app.1962.070061906.
  • Shen, Y.; Golnaraghi, M. F.; Heppler, G. R. Experimental Research and Modeling of Magnetorheological Elastomers. J. Intell. Mater. Syst. Struct. 2004, 15(1), 27–35. DOI: 10.1177/1045389X04039264.
  • Agirre-Olabide, I.; Kuzhir, P.; Elejabarrieta, M. J. Linear Magneto-Viscoelastic Model Based on Magnetic Permeability Components for Anisotropic Magnetorheological Elastomers. J. Magn. Magn. Mater. 2018, 446, 155–161. DOI: 10.1016/j.jmmm.2017.09.017.
  • Qiao, Y.; Zhang, J.; Zhang, M.; Liu, L.; Zhai, P. A Magnetic Field- and Frequency-Dependent Dynamic Shear Modulus Model for Isotropic Silicone Rubber-Based Magnetorheological Elastomers. Compos. Sci. Technol. 2021, 204, 108637. DOI: 10.1016/j.compscitech.2020.108637.
  • Norouzi, M.; Sajjadi Alehashem, S. M.; Vatandoost, H.; Ni, Y. Q.; Shahmardan, M. M. A New Approach for Modelling of Magnetorheological Elastomers. J. Intell. Mater. Syst. Struct. 2015, 27(8), 1121–1135. DOI: 10.1177/1045389X15615966.
  • Agirre-Olabide, I.; Lion, A.; Elejabarrieta, M. J. A New Three-Dimensional Magneto-Viscoelastic Model for Isotropic Magnetorheological Elastomers. Smart Mater. Struct. 2017, 26(3), 035021. DOI: 10.1088/1361-665X/26/3/035021.
  • Nguyen, X. B.; Komatsuzaki, T.; Zhang, N. A Nonlinear Magnetorheological Elastomer Model Based on Fractional Viscoelasticity, Magnetic Dipole Interactions, and Adaptive Smooth Coulomb Friction. Mech. Syst. Signal Process. 2020, 141, 106438. DOI: 10.1016/j.ymssp.2019.106438.
  • Hemmatian, M.; Sedaghati, R.; Rakheja, S. Characterization and Modelling of Temperature Effect on the Shear Mode Properties of Magnetorheological Elastomers. Smart Mater. Struct. 2020, 29(11), 115001. DOI: 10.1088/1361-665X/abb359.
  • Hapipi, N.; Aziz, S. A. A.; Mazlan, S. A.; Ubaidillah; Choi, S. B.; Mohamad, N.; Khairi, M. H. A.; Fatah, A. Y. A. The Field-Dependent Rheological Properties of Plate-Like Carbonyl Iron Particle-Based Magnetorheological Elastomers. Results. Phys. 2019, 12, 2146–2154. DOI: 10.1016/j.rinp.2019.02.045.
  • Bergstrom, J.; Boyce, M. C. Constitutive Modelling of the Large Strain Time-Dependent Behaviour of Elastomers. J. Mech. Phys. Solids. 1998, 46(5), 931–954. DOI: 10.1016/S0022-5096(97)00075-6.
  • Yu, M.; Qi, S.; Fu, J.; Zhu, M.; Chen, D. Understanding the Reinforcing Behaviours of Polyaniline-Modified Carbonyl Iron Particles in Magnetorheological Elastomer Based on Polyurethane/Epoxy Resin IPNs Matrix. Compos. Sci. Technol. 2017, 139, 36–46. DOI: 10.1016/j.compscitech.2016.12.010.
  • Tong, Y.; Dong, X.; Qi, M. Improved Tuneable Range of the Field-Induced Storage Modulus by Using Flower-Like Particles as the Active Phase of Magnetorheological Elastomers. Soft Matter. 2018, 14(18), 3504–3509. DOI: 10.1039/C8SM00359A.
  • Sorokin, V. V.; Ecker, E.; Stepanov, G. V.; Shamonin, M.; Monkman, G. J.; Kramarenko, E. Y.; Khokhlov, A. R. Experimental Study of the Magnetic Field Enhanced Payne Effect in Magnetorheological Elastomers. Soft Matter. 2014, 10(43), 8765–8776. DOI: 10.1039/C4SM01738B.
  • Raa Khimi, S.; Pickering, K. L. The Effect of Silane Coupling Agent on the Dynamic Mechanical Properties of Iron Sand/Natural Rubber Magnetorheological Elastomers. Compos. B Eng. 2016, 90, 115–125. DOI: 10.1016/j.compositesb.2015.11.042.
  • Laun, H. M.; Gabriel, C.; Kieburg, C. Wall Material and Roughness Effects on Transmittable Shear Stresses of Magnetorheological Fluids in Plate–Plate Magnetorheometry. Rheol. Acta. 2011, 50(2), 141–157. DOI: 10.1007/s00397-011-0531-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.