103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Active Brownian particles can mimic the pattern of the substrate

, &
Pages 377-387 | Received 27 Dec 2022, Accepted 27 Oct 2023, Published online: 20 Nov 2023

References

  • Tiribocchi, A.; Wittkowski, R.; Marenduzzo, D.; Cates, M. E. Active Model H: Scalar Active Matter in a Momentum-Conserving Fluid. Phys. Rev. Lett. 2015, 115(18), 188302. DOI: 10.1103/PhysRevLett.115.188302.
  • Wittkowski, R.; Tiribocchi, A.; Stenhammar, J.; Allen, R. J.; Marenduzzo, D.; Cates, M. E. Scalar φ4 Field Theory for Active-Particle Phase Separation. Nat. Commun. 2014, 5(1), 1. DOI: 10.1038/ncomms5351.
  • Fily, Y.; Marchetti, M. C. Athermal Phase Separation of Self-Propelled Particles with No Alignment. Phys. Rev. Lett. 2012, 108(23), 235702. DOI: 10.1103/PhysRevLett.108.235702.
  • Stenhammar, J.; Tiribocchi, A.; Allen, R. J.; Marenduzzo, D.; Cates, M. E. Continuum Theory of Phase Separation Kinetics for Active Brownian Particles. Phys. Rev. Lett. 2013, 111(14), 145702. DOI: 10.1103/PhysRevLett.111.145702.
  • Cates, M. E.; Marenduzzo, D.; Pagonabarraga, I.; Tailleur, J. Arrested Phase Separation in Reproducing Bacteria Creates a Generic Route to Pattern Formation. Proc. Natl. Acad. Sci. USA. 2010, 107(26), 11715. DOI: 10.1073/pnas.1001994107.
  • Thompson, A. G.; Tailleur, J.; Cates, M. E.; Blythe, R. A. Lattice Models of Nonequilibrium Bacterial Dynamics. J. Stat. Mech. 2011, 2011(02), 02029. DOI: 10.1088/1742-5468/2011/02/P02029.
  • Redner, G. S.; Hagan, M. F.; Baskaran, A. Structure and Dynamics of a Phase-Separating Active Colloidal Fluid. Phys. Rev. Lett. 2013, 110(5), 055701. DOI: 10.1103/PhysRevLett.110.055701.
  • Wysocki, A.; Winkler, R. G.; Gompper, G. Cooperative Motion of Active Brownian Spheres in Three-Dimensional Dense Suspensions. Europhys. Lett. 2014, 105(4), 48004. DOI: 10.1209/0295-5075/105/48004.
  • Toner, J.; Tu, Y.; Ramaswamy, S.Hydrodynamics and Phases of Flocks. Ann. Phys. 2005, 318(1), 170. DOI: 10.1016/j.aop.2005.04.011.
  • Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active Particles in Complex and Crowded Environments. Rev. Mod. Phys. 2016, 88(4), 045006. DOI: 10.1103/RevModPhys.88.045006.
  • Chen, D.; Wang, Y.; Wu, G.; Kang, M.; Sun, Y.; Yu, W. Inferring Causal Relationship in Coordinated Flight of Pigeon Flocks. Chaos. 2019, 29(11), 113118. DOI: 10.1063/1.5120787.
  • Parrish, J. K.; Hamner, W. M., Eds. Animal Groups in Three Dimensions: How Species Aggregate; Cambridge: Cambridge University Press, 1997. DOI: 10.1017/CBO9780511601156.
  • Bonner, J. T. A Way of Following Individual Cells in the Migrating Slugs of Dictyostelium Discoideum. Proc. Natl. Acad. Sci. USA. 1998, 95(16), 9355. DOI: 10.1073/pnas.95.16.9355.
  • Anderson, J. L. Colloid Transport by Interfacial Forces. Annu. Rev. Fluid Mech. 1989, 21(1), 61. DOI: 10.1146/annurev.fl.21.010189.000425.
  • Jiang, H.-R.; Yoshinaga, N.; Sano, M. Active Motion of a Janus Particle by Self-Thermophoresis in a Defocused Laser Beam. Phys. Rev. Lett. 2010, 105(26), 268302. DOI: 10.1103/PhysRevLett.105.268302.
  • Falasco, G.; Pfaller, R.; Bregulla, A. P.; Cichos, F.; Kroy, K. Exact Symmetries in the Velocity Fluctuations of a Hot Brownian Swimmer. Phys. Rev. E. 2016, 94(3), 030602. DOI: 10.1103/PhysRevE.94.030602.
  • Buttinoni, I.; Volpe, G.; Kümmel, F.; Volpe, G.; Bechinger, C. Active Brownian Motion Tunable by Light. J. Phys. Condens. Matter. 2012, 24(28), 284129. DOI: 10.1088/0953-8984/24/28/284129.
  • Yang, M.; Ripoll, M. Thermophoretically Induced Flow Field Around a Colloidal Particle. Soft Matter. 2013, 9(18), 4661. DOI: 10.1039/C3SM27949A.
  • Moran, J.; Wheat, P.; Posner, J. Locomotion of Electrocatalytic Nanomotors Due to Reaction Induced Charge Autoelectrophoresis. Phys. Rev. E. 2010, 81(6), 065302. DOI: 10.1103/PhysRevE.81.065302.
  • Golestanian, R.; Liverpool, T. B.; Ajdari, A. Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products. Phys. Rev. Lett. 2005, 94(22), 220801. DOI: 10.1103/PhysRevLett.94.220801.
  • Howse, J. R.; Jones, R. A.; Ryan, A. J.; Gough, T.; Vafabakhsh, R.; Golestanian, R. Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Phys. Rev. Lett. 2007, 99(4), 048102. DOI: 10.1103/PhysRevLett.99.048102.
  • Brooks, A. M.; Sabrina, S.; Bishop, K. J. Shape-Directed Dynamics of Active Colloids Powered by Induced-Charge Electrophoresis. Proc. Natl. Acad. Sci. USA. 2018, 115(6), E1090. DOI: 10.1073/pnas.1711610115.
  • Shen, Z.; Würger, A.; Lintuvuori, J. S. Hydrodynamic Interaction of a Self-Propelling Particle with a Wall. Eur. Phys. J. E. 2018, 41(3), 1. DOI: 10.1140/epje/i2018-11649-0.
  • Bayati, P.; Popescu, M. N.; Uspal, W. E.; Dietrich, S.; Najafi, A. Dynamics Near Planar Walls for Various Model Self-Phoretic Particles. Soft Matter. 2019, 15(28), 5644. DOI: 10.1039/C9SM00488B.
  • Bickel, T.; Zecua, G.; Würger, A. Polarization of Active Janus Particles. Phys. Rev. E. 2014, 89(5), 050303. DOI: 10.1103/PhysRevE.89.050303.
  • Geiseler, A.; Hänggi, P.; Marchesoni, F. Taxis of Artificial Swimmers in a Spatio-Temporally Modulated Activation Medium. Entropy. 2017, 19(3), 97. DOI: 10.3390/e19030097.
  • Olarte-Plata, J. D.; Bresme, F. Orientation of Janus Particles Under Thermal Fields: The Role of Internal Mass Anisotropy. J. Chem. Phys. 2020, 152(20), 204902. DOI: 10.1063/5.0008237.
  • Saha, S.; Ramaswamy, S.; Golestanian, R. Pairing, Waltzing and Scattering of Chemotactic Active Colloids. New J. Phys. 2019, 21(6), 063006. DOI: 10.1088/1367-2630/ab20fd.
  • Secchi, E.; Rusconi, R.; Buzzaccaro, S.; Salek, M. M.; Smriga, S.; Piazza, R.; Stocker, R. Intermittent Turbulence in Flowing Bacterial Suspensions. J. R. Soc. Interface. 2016, 13(119), 20160175. DOI: 10.1098/rsif.2016.0175.
  • Wensink, H. H.; Dunkel, J.; Heidenreich, S.; Drescher, K.; Goldstein, R. E.; Löwen, H.; Yeomans, J. M. Meso-scale turbulence in living fluids. Proc. Natl. Acad. Sci. USA. 2012, 109(36), 14308. DOI: 10.1073/pnas.1202032109.
  • Großmann, R.; Romanczuk, P.; Bär, M.; Schimansky-Geier, L. Vortex Arrays and Mesoscale Turbulence of Self-Propelled Particles. Phys. Rev. Lett. 2014, 113(25), 258104. DOI: 10.1103/PhysRevLett.113.258104.
  • Saha, S.; Golestanian, R.; Ramaswamy, S. Clusters, asters, and collective oscillations in chemotactic colloids. Phys. Rev. E. 2014, 89(6), 062316. DOI: 10.1103/PhysRevE.89.062316.
  • Bialké, J.; Löwen, H.; Speck, T. Microscopic Theory for the Phase Separation of Self-Propelled Repulsive Disks. Europhys. Lett. 2013, 103(3), 30008. DOI: 10.1209/0295-5075/103/30008.
  • Cates, M. E.; Tailleur, J. When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation. Europhys. Lett. 2013, 101, 20010.
  • Speck, T.; Bialké, J.; Menzel, A. M.; Löwen, H. Effective Cahn-Hilliard Equation for the Phase Separation of Active Brownian Particles. Phys. Rev. Lett. 2014, 112(21), 218304. DOI: 10.1103/PhysRevLett.112.218304.
  • Zöttl, A.; Stark, H. Hydrodynamics Determines Collective Motion and Phase Behavior of Active Colloids in Quasi-Two-Dimensional Confinement. Phys. Rev. Lett. 2014, 112(11), 118101. DOI: 10.1103/PhysRevLett.112.118101.
  • Cates, M. E.; Tailleur, J. Motility-Induced Phase Separation. Annu. Rev. Condens. Matter Phys. 2015, 6(1), 219. DOI: 10.1146/annurev-conmatphys-031214-014710.
  • Ramaswamy, S. The Mechanics and Statistics of Active Matter. Annu. Rev. Condens. Matter Phys. 2010, 1(1), 323. DOI: https://doi.org/10.1146/annurev-conmatphys-070909-104101.
  • Marchetti, M. C.; Joanny, J.-F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R. A. Hydrodynamics of Soft Active Matter. Rev. Mod. Phys. 2013, 85(3), 1143. DOI: 10.1103/RevModPhys.85.1143.
  • Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L. Active Brownian Particles. Eur. Phys. J. Spec. Top. 2012, 202(1), 1. DOI: 10.1140/epjst/e2012-01529-y.
  • Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. Novel Type of Phase Transition in a System of Self-Driven Particles. Phys. Rev. Lett. 1995, 75(6), 1226. DOI: 10.1103/PhysRevLett.75.1226.
  • Chaté, H.; Ginelli, F.; Grégoire, G. Comment on “Phase Transitions in Systems of Self-Propelled Agents and Related Network Models”. Phys. Rev. Lett. 2007, 99(22), 229601. DOI: 10.1103/PhysRevLett.99.229601.
  • Chaté, H.; Ginelli, F.; Grégoire, G.; Raynaud, F. Collective Motion of Self-Propelled Particles Interacting without Cohesion. Phys. Rev. E. 2008, 77(4), 046113. DOI: 10.1103/PhysRevE.77.046113.
  • Toner, J.; Tu, Y. Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together. Phys. Rev. Lett. 1995, 75(23), 4326. DOI: 10.1103/PhysRevLett.75.4326.
  • Toner, J.; Tu, Y. Flocks, Herds, and Schools: A Quantitative Theory of Flocking. Phys. Rev. E. 1998, 58(4), 4828. DOI: 10.1103/PhysRevE.58.4828.
  • Quint, D. A.; Gopinathan, A. Topologically Induced Swarming Phase Transition on a 2D Percolated Lattice. Phys. Biol. 2015, 12(4), 046008. DOI: 10.1088/1478-3975/12/4/046008.
  • Morin, A.; Desreumaux, N.; Caussin, J.-B.; Bartolo, D. Distortion and Destruction of Colloidal Flocks in Disordered Environments. Nat. Phys. 2017, 13(1), 63. DOI: 10.1038/nphys3903.
  • Chepizhko, O.; Altmann, E. G.; Peruani, F. Optimal Noise Maximizes Collective Motion in Heterogeneous Media. Phys. Rev. Lett. 2013, 110, 238101.
  • Das, R.; Kumar, M.; Mishra, S. Polar Flock in the Presence of Random Quenched Rotators. Phys. Rev. E. 2018, 98(6), 060602. DOI: 10.1103/PhysRevE.98.060602.
  • Toner, J.; Guttenberg, N.; Tu, Y. Hydrodynamic Theory of Flocking in the Presence of Quenched Disorder. Phys. Rev. E. 2018, 98(6), 062604. DOI: 10.1103/PhysRevE.98.062604.
  • Toner, J.; Guttenberg, N.; Tu, Y. Swarming in the Dirt: Ordered Flocks with Quenched Disorder. Phys. Rev. Lett. 2018, 121(24), 248002. DOI: 10.1103/PhysRevLett.121.248002.
  • Peruani, F.; Aranson, I. S. Cold Active Motion: How Time-Independent Disorder Affects the Motion of Self-Propelled Agents. Phys. Rev. Lett. 2018, 120(23), 238101. DOI: 10.1103/PhysRevLett.120.238101.
  • Sándor, C.; Libál, A.; Reichhardt, C.; Olson Reichhardt, C. J. Dynamic Phases of Active Matter Systems with Quenched Disorder. Phys. Rev. E. 2017, 95(3), 032606. DOI: 10.1103/PhysRevE.95.032606.
  • Sándor, C.; Libál, A.; Reichhardt, C.; Olson Reichhardt, C. J. Dewetting and Spreading Transitions for Active Matter on Random Pinning Substrates. J. Chem. Phys. 2017, 146(20), 204903. DOI: 10.1063/1.4983344.
  • Auschra, S.; Holubec, V.; Söker, N. A.; Cichos, F.; Kroy, K. Polarization-Density Patterns of Active Particles in Motility Gradients. Phys. Rev. E. 2021, 103(6), 062601. DOI: 10.1103/PhysRevE.103.062601.
  • Sharma, A.; Brader, J. M. Phys. Rev. E. 2017, 96, 032604. DOI: 10.1103/PhysRevE.96.032604.
  • Hu, J.; Wysocki, A.; Winkler, R. G.; Gompper, G. Frugivorous Bird Guild Seasonal Patterns in Semiarid Chaco Forests are Linked to Habitat Seasonality but Reveal Phylogenetic Signature. Sci. Rep. 2015, 5(1), 1. DOI: 10.9734/JSRR/2015/14076.
  • Chepizhko, O.; Peruani, F. Diffusion, Subdiffusion, and Trapping of Active Particles in Heterogeneous Media. Phys. Rev. Lett. 2013, 111(16), 160604. DOI: 10.1103/PhysRevLett.111.160604.
  • Choudhury, U.; Straube, A. V.; Fischer, P.; Gibbs, J. G.; Höfling, F. Active Colloidal Propulsion Over a Crystalline Surface. New J. Phys. 2017, 19(12), 125010. DOI: https://doi.org/10.1088/1367-2630/aa9b4b.
  • Semwal, V.; Dikshit, S.; Mishra, S. Dynamics of a Collection of Active Particles on a Two-Dimensional Periodic Undulated Surface. Eur. Phys. J. E. 2021, 44(2), 1. DOI: 10.1140/epje/s10189-021-00044-7.
  • Abdoli, I.; Sharma, A. Stochastic Resetting of Active Brownian Particles with Lorentz Force. Soft Matter. 2021, 17(5), 1307. DOI: 10.1039/D0SM01773F.
  • Stenhammar, J.; Wittkowski, R.; Marenduzzo, D.; Cates, M. E. Light-Induced Self-Assembly of Active Rectification Devices. Sci. Adv. 2016, 2(4), e1501850. DOI: 10.1126/sciadv.1501850.
  • Vuijk, H. D.; Sommer, J.-U.; Merlitz, H.; Brader, J. M.; Sharma, A. Lorentz forces induce inhomogeneity and flux in active systems. Phys. Rev. Res. 2020, 2(1), 013320. DOI: 10.1103/PhysRevResearch.2.013320.
  • Das, R.; Kumar, M.; Mishra, S.Ror2 Signaling Regulates Golgi Structure and Transport Through IFT20 for Tumor Invasiveness. Sci. Rep. 2017, 7(1), 1. DOI: 10.1038/s41598-016-0028-x.
  • Krishna, A.; Mishra, S.Inhomogeneous Activity Enhances Density Phase Separation in Active Model B. Soft Matter. 2021, 19(3), 297. DOI: 10.1080/1539445X.2021.1933030.
  • Vuijk, H. D.; Klempahn, S.; Merlitz, H.; Sommer, J.-U.; Sharma, A. Active Colloidal Molecules in Activity Gradients. Phys. Rev. E. 2022, 106(1), 014617. DOI: 10.1103/PhysRevE.106.014617.
  • Erdmann, U.; Ebeling, W.; Schimansky-Geier, L.; Schweitzer, F. Brownian Particles Far from Equilibrium. Eur. Phys. J. B-Condensed Matter Complex Syst. 2000, 15(1), 105. DOI: 10.1007/s100510051104.
  • Schweitzer, F. Brownian Agents and Active Particles, Springer Series in Synergetics, 2003.
  • Solon, A. P.; Cates, M. E.; Tailleur, J. Active Brownian Particles and Run-And-Tumble Particles: A Comparative Study. Eur. Phys. J. Spec. Top. 2015, 224(7), 1231. DOI: 10.1140/epjst/e2015-02457-0.
  • Cates, M. E.; Tailleur, J. When are Active Brownian Particles and Run-And-Tumble Particles Equivalent? Consequences for Motility-Induced Phase Separation. Europhys. Lett. 2013, 101(2), 20010. DOI: 10.1209/0295-5075/101/20010.
  • Golestanian, R. Collective Behavior of Thermally Active Colloids. Phys. Rev. Lett. 2012, 108(3), 038303. DOI: 10.1103/PhysRevLett.108.038303.
  • Bertin, E.; Droz, M.; Grégoire, G. Boltzmann and Hydrodynamic Description for Self-Propelled Particles. Phys. Rev. E. 2006, 74(2), 022101. DOI: 10.1103/PhysRevE.74.022101.
  • Cates, M. E. Diffusive Transport without Detailed Balance in Motile Bacteria: Does Microbiology Need Statistical Physics? Rep. Prog. Phys. 2012, 75(4), 042601. DOI: 10.1088/0034-4885/75/4/042601.
  • Auschra, S.; Holubec, V. Density and Polarization of Active Brownian Particles in Curved Activity Landscapes. Phys. Rev. E. 2021, 103(6), 062604. DOI: 10.1103/PhysRevE.103.062604.
  • Genz, A.; Bretz, F. Computation of Multivariate Normal and T Probabilities; Springer Science & Business Media, 2009; Vol. 195. DOI: 10.1007/978-3-642-01689-9.
  • Jayadevan, R.; Kolhe, S. R.; Patil, P. M.; Pal, U. Offline Recognition of Devanagari Script: A Survey. IEEE Trans. Syst. Man, Cybern. C. 2011, 41(6), 782. DOI: 10.1109/TSMCC.2010.2095841.
  • Rao, P.; Ajitha, T. Telugu script recognition-a feature-based approach. Proceedings Of 3rd International Conference On Document Analysis And Recognition. 1995, 1, 323–326.
  • Pellicciotta, N.; Paoluzzi, M.; Buonomo, D.; Frangipane, G.; Angelani, L.; Di Leonardo, R. Colloidal Transport by Light Induced Gradients of Active Pressure. Nat. Commun. 2023, 14(1), 4191. DOI: 10.1038/s41467-023-39974-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.