80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Silane coupling agents with imidazoles superficially modify titanium dioxide

, , , , , & show all
Pages 388-410 | Received 05 Jul 2023, Accepted 27 Oct 2023, Published online: 16 Nov 2023

References

  • Henderson, M. A. Structural Sensitivity in the Dissociation of Water on TiO2 Single-Crystal Surfaces. Langmuir. 1996, 12(21), 5093–5098. DOI: 10.1021/la960360t.
  • Henderson, M. A. The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited. Surf. Sci. Rep. 2002, 46(1), 1–308. DOI: 10.1016/S0167-5729(01)00020-6.
  • Diebold, U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48(5–8), 53–229. DOI: 10.1016/S0167-5729(02)00100-0.
  • Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D. T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials. 2020, 10(2), 387. DOI: 10.3390/nano10020387.
  • Warheit, D. B.; Brown, S. C. What is the Impact of Surface Modifications and Particle Size on Commercial Titanium Dioxide Particle Samples? – a Review of in vivo Pulmonary and Oral Toxicity Studies – Revised 11-6-2018. Toxicol. Lett. 2019, 302, 42–59. DOI: 10.1016/j.toxlet.2018.11.008.
  • Al Jitan, S.; Palmisano, G.; Garlisi, C. Synthesis and Surface Modification of TiO2-Based Photocatalysts for the Conversion of CO2. Catalysts. 2020, 10(2), 227. DOI: 10.3390/catal10020227.
  • Hu, W.; Yang, S.; Yang, S. Surface Modification of TiO2 for Perovskite Solar Cells. Trends Chem. 2020, 2(2), 148–162. DOI: 10.1016/j.trechm.2019.11.002.
  • Veronovski, N. TiO2 Applications as a Function of Controlled Surface Treatment. In Titanium Dioxide - Material for a Sustainable Environment; 421–443, 2016; Dongfang, Y., Eds.; Intech Open, electronic version.
  • Huang, Y.; Mei, L.; Chen, X.; Wang, Q. Recent Developments in Food Packaging Based on Nanomaterials. Nanomaterials. 2018, 8(10), 830. DOI: 10.3390/nano8100830.
  • Roilo, D.; Maestri, C. A.; Scarpa, M.; Bettotti, P.; Checchetto, R. Gas Barrier and Optical Properties of Cellulose Nanofiber Coatings with Dispersed TiO2 Nanoparticles. Surf. Coat. Technol. 2018, 343, 131–137. DOI: 10.1016/j.surfcoat.2017.10.015.
  • Vallejo-Montesinos, J.; Gámez-Cordero, J.; Zarraga, R.; Pérez Pérez, M. C.; Gonzalez-Calderon, J. A. Influence of the Surface Modification of Titanium Dioxide Nanoparticles TiO 2 Under Efficiency of Silver Nanodots Deposition and Its Effect Under the Properties of Starch–Chitosan (SC) Films. Polym. Bull. 2019, 77(1), 107–133. DOI: 10.1007/s00289-019-02740-z.
  • Oleyaei, S. A.; Zahedi, Y.; Ghanbarzadeh, B.; Moayedi, A. A. Modification of Physicochemical and Thermal Properties of Starch Films by Incorporation of TiO2 Nanoparticles. Int. J. Biol. Macromol. 2016, 89, 256–264. DOI: 10.1016/j.ijbiomac.2016.04.078.
  • Bozzi, A.; Yuranova, T.; Kiwi, J. Self-Cleaning of Wool-Polyamide and Polyester Textiles by TiO2-Rutile Modification Under Daylight Irradiation at Ambient Temperature. J. Photochem. Photobiol. A. 2005, 172(1), 27–34. DOI: 10.1016/j.jphotochem.2004.11.010.
  • Song, Y. Y.; Hildebrand, H.; Schmuki, P. Optimized Monolayer Grafting of 3-Aminopropyltriethoxysilane Onto Amorphous, Anatase and Rutile TiO2. Surf. Sci. 2010, 604(3–4), 346–353. DOI: 10.1016/j.susc.2009.11.027.
  • Liang, Y.; Pakdel, E.; Zhang, M.; Sun, L.; Wang, X. Photoprotective Properties of Alpaca Fiber Melanin Reinforced by Rutile TiO2 Nanoparticles: A Study on Wool Fabric. Polym. Degrad. Stab. 2019, 160, 80–88. DOI: 10.1016/j.polymdegradstab.2018.12.006.
  • Mittal, T.; Tiwari, S.; Mehta, A.; Tiwari, S. K.; Sharma, S. N. Comparison of Polymeric Stabilization of Organic/Inorganic (MEH-PPV/TiO2) Hybrid Composites Synthesized via Different Routes. Colloid. Polym. Sci. 2017, 295(7), 1097–1107. DOI: 10.1007/s00396-017-4094-9.
  • Liang, Y.; Ding, H. Mineral-TiO2 Composites: Preparation and Application in Papermaking, Paints and Plastics. J. Alloys Compd. 2020, 844, 156139. DOI: 10.1016/j.jallcom.2020.156139.
  • Fernández-Ibáñez, P.; Blanco, J.; Malato, S.; De Las Nieves, F. J. Application of the Colloidal Stability of TiO2 Particles for Recovery and Reuse in Solar Photocatalysis. Water Res. 2003, 37(13), 3180–3188. DOI: 10.1016/S0043-1354(03)00157-X.
  • Tseng, W. J.; Lin, K. C. Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions. Mater. Sci. Eng. A. 2003, 355(1–2), 186–192. DOI: 10.1016/S0921-5093(03)00063-7.
  • Sangli, P. M.; Chaudhary, S.; Rose, E.; Bhavsar, R. Effect of Molecular Weight of Polycarboxylate Surfactant on Properties of Concentrated Aqueous Titanium Dioxide Dispersions. J. Coat. Technol. Res. 2020, 17(2), 393–400. DOI: 10.1007/s11998-019-00285-4.
  • Liang, Y. U.; Chen, W.; Yang, G.; Ding, H. A. O.; Hou, X.; Ran, J. U. N. Preparation and Characterization of Tio2/Sericite Composite Material with Favorable Pigments Properties. Surf. Rev. Lett. 2019, 26(8), 1950039. DOI: 10.1142/S0218625X19500392.
  • Monfared, A. H.; Jamshidi, M. Effects of Photocatalytic Activity of Nano TiO2 and PAni/TiO2 Nanocomposite on the Physical/Mechanical Performances of Acrylic Pseudo Paints. Prog. Org. Coat. 2019, 136(August 2018), 105300. DOI: 10.1016/j.porgcoat.2019.105300.
  • Zhao, J.; Milanova, M.; Warmoeskerken, M. M. C. G.; Dutschk, V. Surface Modification of TiO2 Nanoparticles with Silane Coupling Agents. Colloids Surf. A. 2012, 413, 273–279. DOI: 10.1016/j.colsurfa.2011.11.033.
  • Shang, X.; Zhu, Y.; Li, Z. Surface Modification of Silicon Carbide with Silane Coupling Agent and Hexadecyl Iodiele. Appl. Surf. Sci. 2017, 394, 169–177. DOI: 10.1016/j.apsusc.2016.10.102.
  • Liu, Y.; Guo, L.; Wang, W.; Sun, Y.; Wang, H. Modifying Wood Veneer with Silane Coupling Agent for Decorating Wood Fiber/high-Density Polyethylene Composite. Constr. Build. Mater. 2019, 224, 691–699. DOI: 10.1016/j.conbuildmat.2019.07.090.
  • Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Zhang, H.; Chen, H. Effect of Silane Coupling Agent on Improving the Adhesive Properties Between Asphalt Binder and Aggregates. Constr. Build. Mater. 2018, 169, 591–600. DOI: 10.1016/j.conbuildmat.2018.02.186.
  • Sonn, J. S.; Lee, J. Y.; Jo, S. H.; Yoon, I. H.; Jung, C. H.; Lim, J. C. Effect of Surface Modification of Silica Nanoparticles by Silane Coupling Agent on Decontamination Foam Stability. Ann. Nucl. Energy. 2018, 114, 11–18. DOI: 10.1016/j.anucene.2017.12.007.
  • Ahangaran, F.; Navarchian, A. H. Recent Advances in Chemical Surface Modification of Metal Oxide Nanoparticles with Silane Coupling Agents: A Review. Adv. Coll. Interf. Sci. December 1, 2020, 286, 102298. DOI: 10.1016/j.cis.2020.102298.
  • Heriyanto; Pahlevani, F.; Sahajwalla, V. Effect of Different Waste Filler and Silane Coupling Agent on the Mechanical Properties of Powder-Resin Composite. J. Clean. Prod. 2019, 224, 940–956. DOI: 10.1016/j.jclepro.2019.03.269.
  • Mark, J. E.; Allcock, H. R.; West, R. Inorganic Polymers, 2nd ed; Oxford University Press: New York, 2005. DOI: 10.1002/adma.19930050116.
  • Rahimi, A.; Shokrolahi, P. Application of Inorganic Polymeric Materials. I. Polysiloxanes. Int. J. Inorg. Mater. 2001, 3(7), 843–847. DOI: 10.1016/S1466-6049(01)00162-3.
  • Ostwal, M.; Singh, R. P.; Dec, S. F.; Lusk, M. T.; Way, J. D. 3-Aminopropyltriethoxysilane Functionalized Inorganic Membranes for High Temperature CO2/N2 Separation. J. Memb. Sci. 2011, 369(1), 139–147. DOI: 10.1016/j.memsci.2010.11.053.
  • Wen, Z.; Xu, C.; Qian, X.; Zhang, Y.; Wang, X.; Song, S.; Dai, M.; Zhang, C. A Two-Step Carbon Fiber Surface Treatment and Its Effect on the Interfacial Properties of CF/EP Composites: The Electrochemical Oxidation Followed by Grafting of Silane Coupling Agent. Appl. Surf. Sci. 2019, 486, 546–554. DOI: 10.1016/j.apsusc.2019.04.248.
  • Wang, Y.; Wang, Z.; Zhao, L.; Fan, Q.; Zeng, X.; Liu, S.; Pang, W. K.; He, Y. B.; Guo, Z. Lithium Metal Electrode with Increased Air Stability and Robust Solid Electrolyte Interphase Realized by Silane Coupling Agent Modification. Adv.Mate. 2021, 33(14). DOI: 10.1002/adma.202008133.
  • Yu, S.; Oh, K. H.; Hwang, J. Y.; Hong, S. H. The Effect of Amino-Silane Coupling Agents Having Different Molecular Structures on the Mechanical Properties of Basalt Fiber-Reinforced Polyamide 6,6 Composites. Compos. B. 2019, 163, 511–521. DOI: 10.1016/j.compositesb.2018.12.148.
  • Ghorbani, F.; Zamanian, A.; Behnamghader, A.; Daliri Joupari, M. A Novel Pathway for in situ Synthesis of Modified Gelatin Microspheres by Silane Coupling Agents as a Bioactive Platform. J. Appl. Polym. Sci. 2018, 135(41). DOI: 10.1002/app.46739.
  • Reddy, K. R.; Gomes, V. G.; Hassan, M. Carbon Functionalized TiO2 Nanofibers for High Efficiency Photocatalysis. Mater. Res. Express. 2014, 1(1). DOI: 10.1088/2053-1591/1/1/015012.
  • Sun, Y.; Fang, X.; Ma, Z.; Xu, L.; Lu, Y.; Yu, Q.; Yuan, N.; Ding, J. Enhanced UV-Light Stability of Organometal Halide Perovskite Solar Cells with Interface Modification and a UV Absorption Layer. J. Mater. Chem. C. 2017, 5(34), 8682–8687. DOI: 10.1039/c7tc02603j.
  • Wang, G.; Weng, D.; Chen, C.; Chen, L.; Wang, J. Influence of TiO2 Nanostructure Size and Surface Modification on Surface Wettability and Bacterial Adhesion. Colloids Interface Sci. Commun. 2020, 34(September), 100220. DOI: 10.1016/j.colcom.2019.100220.
  • Wang, Q.; Huang, J.-Y.; Li, H.-Q.; Zhao, A. Z.-J.; Wang, Y.; Zhang, K.-Q.; Sun, H.-T.; Lai, Y.-K. Recent Advances on Smart TiO2 Nanotube Platforms for Sustainable Drug Delivery Applications. Int. J. Nanomed. 2016, Volume 12(12), 151–165. DOI: 10.2147/IJN.S117498.
  • Zhang, H.; Qing, S.; Gui, Q.; Zhang, X.; Zhang, A. Effects of Surface Modification and Surfactants on Stability and Thermophysical Properties of TiO2/Water Nanofluids. J. Mol. Liq. 2022, 349. DOI: 10.1016/j.molliq.2021.118098.
  • Zhang, H.; Qing, S.; Xu, J.; Zhang, X.; Zhang, A. Stability and Thermal Conductivity of TiO2/Water Nanofluids: A Comparison of the Effects of Surfactants and Surface Modification. Colloids Surf. A. 2022, 641. DOI: 10.1016/j.colsurfa.2022.128492.
  • Khan, M. Z.; Baheti, V.; Militky, J.; Wiener, J.; Ali, A. Self-Cleaning Properties of Polyester Fabrics Coated Particles and Trimethoxy(octadecyl)silane. J. Ind. Text. 2019, 50(4), 1–23. DOI: 10.1177/1528083719836938.
  • Katiyar, P.; Mishra, S.; Srivastava, A.; Prasad, N. E. Preparation of TiO 2 –SiO 2 Hybrid Nanosols Coated Flame-Retardant Polyester Fabric Possessing Dual Contradictory Characteristics of Superhydrophobicity and Self Cleaning Ability. J. Nanosci. Nanotechnol. 2020, 20(3), 1780–1789. DOI: 10.1166/jnn.2020.17166.
  • Min, K. S.; Manivannan, R.; Son, Y. Porphyrin Dye/TiO2 Imbedded PET to Improve Visible-Light Photocatalytic Activity and Organosilicon Attachment to Enrich Hydrophobicity to Attain an Efficient Self-Cleaning Material. Dyes Pigm. 2019, 162(September 2019), 8–17. DOI: 10.1016/j.dyepig.2018.10.014.
  • Brzakalski, D.; Przekop, R. E.; Frydrych, M.; Pakuła, D.; Dobrosielska, M.; Sztorch, B.; Marciniec, B. Where Ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO2 Dispersants and Stabilizers for Pigmented Epoxy Resins. Materials. 2022, 15(2), 494. DOI: https://doi.org/10.3390/ma15020494.
  • Chen, P.; Wei, B.; Zhu, X.; Gao, D.; Gao, Y.; Cheng, J.; Liu, Y. Fabrication and Characterization of Highly Hydrophobic Rutile TiO2-Based Coatings for Self-Cleaning. Ceram. Int. 2019, 45(5), 6111–6118. DOI: 10.1016/j.ceramint.2018.12.085.
  • Wang, L.; Xie, G.; Mi, X.; Zhang, B.; Du, Y.; Zhu, Q.; Yu, Z. Surface-Modified TiO2@sio2 Nanocomposites for Enhanced Dispersibility and Optical Performance to Apply in the Printing Process as a Pigment. ACS Omega. 2023, 8(22), 20116–20124. DOI: https://doi.org/10.1021/acsomega.3c02679.
  • Nguyen, T. C.; Nguyen, T. D.; Vu, D. T.; Dinh, D. P.; Nguyen, A. H.; Ly, T. N. L.; Dao, P. H.; Nguyen, T. L.; Bach, L. G.; Thai, H. Modification of Titanium Dioxide Nanoparticles with 3-(Trimethoxysilyl)propyl Methacrylate Silane Coupling Agent. J. Chem. 2020, 2020, 1–10. DOI: 10.1155/2020/1381407.
  • Martinez-Oviedo, A.; Kshetri, Y. K.; Joshi, B.; Lee, S. W. Surface Modification of Blue TiO2 with Silane Coupling Agent for NOx Abatement. Prog. Nat. Sci. 2021, 31(2), 230–238. DOI: 10.1016/j.pnsc.2021.02.001.
  • Hou, Z.; Li, G.; Ling, C.; Wang, H.; Zhu, L.; Guo, T.; Zhang, T.; Feng, B.; Cao, M.; Xue, Q. Great Enhancement of Self-Powered Photoresponse Performance of C3H8NSi-TiO2 NRAs/n-Si Heterojunction by Build-In and Build-Out Electric Field Jointly Promoting Carrier Separation. Adv. Electron. Mater. 2020, 6(8). DOI: 10.1002/aelm.202000501.
  • Wang, L.; Jiang, X.; Wang, C.; Huang, Y.; Meng, Y.; Shao, J. Titanium Dioxide Grafted with Silane Coupling Agents and Its Use in Blue Light Curing Ink. Color. Technol. 2020, 136(1), 15–22. DOI: 10.1111/cote.12434.
  • Lai, L.; Wu, H.; Mao, G.; Li, Z.; Zhang, L.; Liu, Q. Microstructure and Corrosion Resistance of Two-Dimensional TiO2/MoS2 Hydrophobic Coating on AZ31B Magnesium Alloy. Coatings. 2022, 12 (10). DOI: https://doi.org/10.3390/coatings12101488.
  • You, S.-L.; Kelly, J. W. Highly Efficient Enantiospecific Synthesis of Imidazoline-Containing Amino Acids Using Bis(triphenyl)oxodiphosphonium Trifluoromethanesulfonate. Org. Lett. 2004, 6(10), 1681–1683. DOI: 10.1021/ol049439c.
  • Wu, Y.-Q.; Limburg, D. C.; Wilkinson, D. E.; Hamilton, G. S. Formation of Nitrogen-Containing Heterocycles Using Di(Imidazole-1-Yl)methanimine. J. Heterocycl. Chem. 2009, 40(1), 191–193. DOI: 10.1002/jhet.5570400129.
  • Yavari, I.; Nematpour, M.; Ghanbari, E. A Tandem Synthesis of 5-Sulfonylimino-2-Imidazolones from Sulfonoketenimides and Dialkyl Azodicarboxylates. Mol. Divers. 2014, 18(4), 721–725. DOI: 10.1007/s11030-014-9529-3.
  • Alfonso, M.; Tárraga, A.; Molina, P. Pyrrole, Imidazole, and Triazole Derivatives as Ion-Pair Recognition Receptors. Tetrahedron Lett. 2016, 57(29), 3053–3059. DOI: 10.1016/j.tetlet.2016.06.016.
  • Biron, E.; Chatterjee, J.; Kessler, H. Solid-Phase Synthesis of 1,3-Azole-Based Peptides and Peptidomimetics. Org. Lett. 2006, 8(11), 2417–2420. DOI: 10.1021/ol0607645.
  • Li, M.; Zhang, W.; Wang, W.; He, Q.; Yin, M.; Qin, X.; Zhang, T.; Wu, T. Imidazole Improves Cognition and Balances Alzheimer’s-like Intracellular Calcium Homeostasis in Transgenic Drosophila Model. Neurourol. Urodyn. 2017, 37(4), 1250–1257. DOI: 10.1002/nau.23448.
  • Maru, M. S.; Shah, M. K. Synthesis, Characterization and Antimicrobial Evaluation of Transition Metal Complexes of Monodentate 2- (Substituted Phenyl) -1 H -Benzo [D] Imidazoles Chiang Mai J. Sci. 2015, 42(1), 216–227.
  • Borhade, A. V.; Tope, D. R.; Gite, S. G. Synthesis, Characterization and Catalytic Application of Silica Supported Tin Oxide Nanoparticles for Synthesis of 2,4,5-Tri and 1,2,4,5-Tetrasubstituted Imidazoles Under Solvent-Free Conditions. Arabian J. Chem. 2017, 10, S559–S567. DOI: 10.1016/j.arabjc.2012.11.001.
  • Zhang, S.; Ye, J.; Sun, Y.; Kang, J.; Liu, J.; Wang, Y.; Li, Y.; Zhang, L.; Ning, G. Electrospun Fibrous Mat Based on Silver (I) Metal-Organic Frameworks-Polylactic Acid for Bacterial Killing and Antibiotic-Free Wound Dressing. Chem. Eng. J. 2020, 390(February), 124523. DOI: 10.1016/j.cej.2020.124523.
  • Li, C.; Ma, C.; Li, J. Highly Efficient Flame Retardant Poly(lactic Acid) Using Imidazole Phosphate Poly(ionic Liquid). Polym. Adv. Technol. 2020, 31(8), 1765–1775. DOI: 10.1002/pat.4903.
  • Liu, S.; Qin, S.; He, M.; Zhou, D.; Qin, Q.; Wang, H. Current Applications of Poly(lactic Acid) Composites in Tissue Engineering and Drug Delivery. Compos. B. 2020, 199(May), 108238. DOI: 10.1016/j.compositesb.2020.108238.
  • Zhong, M.; Zhang, X.; Yang, D. H.; Zhao, B.; Xie, Z.; Zhou, Z.; Bu, X. H. Zeolitic Imidazole Framework Derived Composites of Nitrogen-Doped Porous Carbon and Reduced Graphene Oxide as High-Efficiency Cathode Catalysts for Li-O2 Batteries. Inorg. Chem. Front. 2017, 4(9), 1533–1538. DOI: 10.1039/c7qi00314e.
  • Lunt, J. Large-Scale Production, Properties and Commercial Applications of Polylactic Acid Polymers. Polym. Degrad. Stab. 1998, 3910(97), 145–152. DOI: 10.1016/S0141-3910(97)00148-1.
  • Díaz-Pedraza, A.; Piñeros-Castro, Y.; Ortega-Toro, R. Bi-Layer Materials Based on Thermoplastic Corn Starch, Polylactic Acid and Modifiedpolypropylene. Rev. Mex. Ing. Quim. 2013, 12(3), 505–511.
  • Sun, Z.; Zhang, L.; Liang, D.; Xiao, W.; Lin, J. Mechanical and Thermal Properties of PLA Biocomposites Reinforced by Coir Fibers. Int. J. Polym. Sci. 2017, 2017, 1–9. DOI: 10.1155/2017/2178329.
  • Elsawy, M. A.; Kim, K. H.; Park, J. W.; Deep, A. Hydrolytic Degradation of Polylactic Acid (PLA) and Its Composites. Renewable Sustain. Energy Rev. 2017, 79(June 2016), 1346–1352. DOI: 10.1016/j.rser.2017.05.143.
  • Lonkar, S. P.; Kushwaha, O. S.; Leuteritz, A.; Heinrich, G.; Singh, R. P. Self Photostabilizing UV-Durable MWCNT/Polymer Nanocomposites. R.S.C. Adv. 2012, 2(32), 12255. DOI: 10.1039/c2ra21583g.
  • Kaseem, M.; Hamad, K.; Rehman, Z. U. Review of Recent Advances in Polylactic Acid/TiO2 Composites. Materials. 2019, 12(22). DOI: 10.3390/ma12223659.
  • Zamboulis, L.; Klonos, Z.; Papadopoulos, A.; Terzopoulou, P. A.; Bikiaris, D. N.; Kyritsis, A.; Pissis, P. Effects of Ag, ZnO and TiO 2 Nanoparticles at Low Contents on the Crystallization, Semicrystalline Morphology, Interfacial Phenomena and Segmental Dynamics of PLA. Mater. Today Commun. 2021, 27(February), 102192. DOI: 10.1016/j.mtcomm.2021.102192.
  • Terzopoulou, Z.; Klonos, P. A.; Kyritsis, A.; Tziolas, A.; Avgeropoulos, A.; Papageorgiou, G. Z.; Bikiaris, D. N. Interfacial Interactions, Crystallization and Molecular Mobility in Nanocomposites of Poly (Lactic Acid) Filed with New Hybrid Inclusions Based on Graphene Oxide and Silica Nanoparticles. Polymer (Guildf). 2019, 166(January), 1–12. DOI: 10.1016/j.polymer.2019.01.041.
  • Amza, C. G.; Zapciu, A.; Baciu, F.; Vasile, M. I.; Popescu, D. Aging of 3D Printed Polymers Under Sterilizing UV-C Radiation. Polymers. 2021, 13(24), 1–16. DOI: 10.3390/polym13244467.
  • González-Calderón, J. A.; Peña-Juárez, M. G.; Zarraga, R.; Contreras-López, D.; Vallejo-Montesinos, J. The Role of Alkoxysilanes Functional Groups for Surface Modification of TiO2 Nanoparticles on Non-Isothermal Crystallization of Isotactic Polypropylene Composites. Rev. Mex. Ing. Quim. 2021, 20(1), 435–452. DOI: 10.24275/rmiq/Poly1995.
  • Khan, M. I.; Suleman, A.; Hasan, M. S.; Ali, S. S.; Al-Muhimeed, T. I.; AlObaid, A. A.; Iqbal, M.; Almoneef, M. M.; Alwadai, N. Effect of Ce Doping on the Structural, Optical, and Photovoltaic Properties of TiO2 Based Dye-Sensitized Solar Cells. Mater. Chem. Phys. 2021, 274, 125177. DOI: 10.1016/j.matchemphys.2021.125177.
  • Suhailath, K.; Ramesan, M. T. Effect of Nano-Ce-Doped TiO2 on AC Conductivity and DC Conductivity Modeling Studies of Poly (N-Butyl Methacrylate). J. Electron. Mater. 2018, 47(11), 6484–6493. DOI: 10.1007/s11664-018-6556-3.
  • Kaneko, M. Anatase TiO 2 Adsorption on 3-Aminopropyltrimethoxysilane-Modified Al or Glass Surfaces. Heliyon. 2019, 5(5), e01734. DOI: https://doi.org/10.1016/j.heliyon.2019.e01734.
  • Ahmad, A.; Razali, M. H.; Mamat, M.; Mehamod, F. S. B.; Anuar Mat Amin, K. Adsorption of Methyl Orange by Synthesized and Functionalized-CNTs with 3-Aminopropyltriethoxysilane Loaded TiO2 Nanocomposites. Chemosphere. 2017, 168, 474–482. DOI: 10.1016/j.chemosphere.2016.11.028.
  • Ding, X.; Pan, S.; Lu, C.; Guan, H.; Yu, X.; Tong, Y. Hydrophobic Photocatalytic Composite Coatings Based on Nano-TiO2 Hydrosol and Aminopropyl Terminated Polydimethylsiloxane Prepared by a Facile Approach. Mater. Lett. 2018, 228, 5–8. DOI: 10.1016/j.matlet.2018.05.103.
  • Ek, S.; Iiskola, E. I.; Niinistö, L.; Vaittinen, J.; Pakkanen, T. T.; Root, A. A 29Si and 13C CP/MAS NMR Study on the Surface Species of Gas-Phase-Deposited γ-Aminopropylalkoxysilanes on Heat-Treated Silica. J. Phys. Chem B. 2004, 108(31), 11454–11463. DOI: 10.1021/jp048927z.
  • Allen, J. J.; Rosenberg, E.; Johnston, E.; Hart, C. Sol-Gel Synthesis and Characterization of Silica Polyamine Composites: Applications to Metal Ion Capture. ACS Appl. Mater. Interfaces. 2012, 4(3), 1573–1584. DOI: 10.1021/am201761m.
  • Cao, J.; Zuo, Y.; Wang, D.; Zhang, J.; Feng, S. Functional Polysiloxanes: A Novel Synthesis Method and Hydrophilic Applications. New J. Chem. 2017, 41(16), 8546–8553. DOI: 10.1039/C7NJ01294B.
  • Mazzei, P.; Piccolo, A. Acetone-Induced Polymerisation of 3- Aminopropyltrimethoxysilane (APTMS) as Revealed by NMR Spectroscopy. Magn. Reson. Chem. 2014, 52(7), 383–388. DOI: 10.1002/mrc.4076.
  • El-Sayed, N. S.; El-Sakhawy, M.; Brun, N.; Hesemann, P.; Kamel, S. New Approach for Immobilization of 3-Aminopropyltrimethoxysilane and TiO2 Nanoparticles into Cellulose for BJ1 Skin Cells Proliferation. Carbohydr. Polym. 2018, 199, 193–204. DOI: 10.1016/j.carbpol.2018.07.004.
  • Cao, X. Aminopropyltriethoxysilane-Mediated Surface Functionalization of Hydroxyapatite Nanoparticles: Synthesis, Characterization, and in vitro Toxicity Assay. Int. J. Nanomed. 2011, 3449–3459. DOI: 10.2147/IJN.S27166.
  • Tonda-Turo, C.; Gentile, P.; Saracino, S.; Chiono, V.; Nandagiri, V. K.; Muzio, G.; Canuto, R. A.; Ciardelli, G. Comparative Analysis of Gelatin Scaffolds Crosslinked by Genipin and Silane Coupling Agent. Int. J. Biol. Macromol. 2011, 49(4), 700–706. DOI: 10.1016/j.ijbiomac.2011.07.002.
  • Uhlig, F.; Dortmund, D. Si NMR Some Practical Aspects. Inorg. Chem. 2000, 2(46), 208–222. DOI: 10.1021/ja027509+.
  • Gonzalez-Calderon, J. A.; Pérez-Pérez, C.; Pérez Rodríguez, R. Y.; Fierro-González, J. C.; Vallejo-Montesinos, J. Silanization of Di-N-Octyldichlorosilane as a Route to Improve the Integration of Titanium Dioxide in Polypropylene. J. Therm. Anal. Calorim. 2019, 138(2), 1069–1079. DOI: 10.1007/s10973-019-08159-y.
  • Chen, G.; Zhou, S.; Gu, G.; Wu, L. Modification of Colloidal Silica on the Mechanical Properties of Acrylic Based Polyurethane/Silica Composites. Colloids Surf. A. 2007, 296(1–3), 29–36. DOI: 10.1016/j.colsurfa.2006.09.016.
  • Trivedi, M. K.; Dahryn Trivedi, A. B.; Gunin Saikia, G. N. Physical and Structural Characterization of Biofield Treated Imidazole Derivatives. Nat. Prod. Chem. Res. 2015, 3 (5). DOI: 10.4172/2329-6836.1000187.
  • Ochoa, Y.; Ortegón, Y.; Rodríguez Páez, J. E. Synthesis of TiO 2, Anatase Phase by the Sol-Gel Method: Study of the Effect of the Presence of AcacH in the System. Revista Facultad de Ingeniería Universidad de Antioquia. 2010, 52, 29–40.
  • Rodríguez, J.; Vargas, M.; Mosquera, P.; Camargo, R.; Ortegón, Y.; Ochoa, Y. Nanopartículas de Tio2, Fase Anatasa, Sintetizadas Por Métodos Químicos. Ingeniería y desarrollo. 2011, 29(2), 186–201.
  • Yakdoumi, F. Z.; Hadj-Hamou, A. S. Effectiveness Assessment of TiO2-Al2O3nano-Mixture as a Filler Material for Improvement of Packaging Performance of PLA Nanocomposite Films. J. Polym. Eng. 2020, 40(10), 848–858. DOI: 10.1515/polyeng-2020-0105.
  • Fonseca, C.; Ochoa, A.; Ulloa, M. T.; Alvarez, E.; Canales, D.; Zapata, P. A. Poly(lactic Acid)/TiO2 Nanocomposites as Alternative Biocidal and Antifungal Materials. Mater. Sci. Eng. C. 2015, 57, 314–320. DOI: 10.1016/j.msec.2015.07.069.
  • Medeiros, A. R.; Lima, F. D. S.; Rosenberger, A. G.; Dragunski, D. C.; Muniz, E. C.; Radovanovic, E.; Caetano, J. Poly(butylene Adipate-Co-Terephthalate)/poly(lactic Acid) Polymeric Blends Electrospun with TiO2-R/Fe3O4 for Pollutant Photodegradation. Polymers (Basel). 2023, 15 (3). DOI: 10.3390/polym15030762.
  • Mejía, J. M.; Mejía de Gutiérrez, R.; Puertas, F. Ceniza de Cascarilla de Arroz Como Fuente de Sílice En Sistemas Cementicios de Ceniza Volante y Escoria Activados Alcalinamente. Mater. de Constr. 2013, 63(311), 361–375. DOI: 10.3989/mc.2013.04712.
  • Sugimoto, Y.; Sato, K.; Hotta, Y. Protection of Carbon Fiber Surfaces with Silicon-Based Ceramic Coating. J. Ceram. Soc. Jpn. 2019, 127(5), 331–334. DOI: https://doi.org/10.2109/jcersj2.19026.
  • Yang, C.; Zhu, B.; Wang, J.; Qin, Y. Structural Changes and Nano-TiO2 Migration of Poly(lactic Acid)-Based Food Packaging Film Contacting with Ethanol as Food Simulant. Int. J. Biol. Macromol. 2019, 139, 85–93. DOI: 10.1016/j.ijbiomac.2019.07.151.
  • Yi, Z.; Yang, J.; Liu, X.; Mao, L.; Cui, L.; Liu, Y. Enhanced Mechanical Properties of Poly(lactic Acid) Composites with Ultrathin Nanosheets of MXene Modified by Stearic Acid. J. Appl. Polym. Sci. 2019, 48621, 1–8. DOI: 10.1002/app.48621.
  • Iijima, M.; Kohda, N.; Kawaguchi, K.; Muguruma, T.; Ohta, M.; Naganishi, A.; Murakami, T.; Mizoguchi, I. Effects of Temperature Changes and Stress Loading on the Mechanical and Shape Memory Properties of Thermoplastic Materials with Different Glass Transition Behaviours and Crystal Structures. Eur. J. Orthod. 2015, 37(6), 665–670. DOI: 10.1093/ejo/cjv013.
  • Andrade-Guel, M.; Cabello-Alvarado, C. J.; Cadenas-Pliego, G.; Ávila-Orta, C. A. PLA-Zno/TiO2 Nanocomposite Obtained by Ultrasound-Assisted Melt-Extrusion for Adsorption of Methylene Blue. Nanomaterials. 2022, 12 (23). DOI: 10.3390/nano12234248.
  • Costa, R. G. F.; Brichi, G. S.; Ribeiro, C.; Mattoso, L. H. C. Nanocomposite Fibers of Poly(lactic Acid)/Titanium Dioxide Prepared by Solution Blow Spinning. Polym. Bull. 2016, 73(11), 2973–2985. DOI: 10.1007/s00289-016-1635-1.
  • Mallick, S.; Ahmad, Z.; Touati, F.; Bhadra, J.; Shakoor, R. A.; Al-Thani, N. J. PLA-Tio2 Nanocomposites: Thermal, Morphological, Structural, and Humidity Sensing Properties. Ceram. Int. 2018, 44(14), 16507–16513. DOI: 10.1016/j.ceramint.2018.06.068.
  • Salarizadeh, P.; Javanbakht, M.; Pourmahdian, S. Enhancing the Performance of SPEEK Polymer Electrolyte Membranes Using Functionalized TiO2 Nanoparticles with Proton Hopping Sites. R.S.C. Adv. 2017, 7(14), 8303–8313. DOI: 10.1039/c6ra25959f.
  • González, E. A. S.; Olmos, D.; Lorente, M. Á.; Vélaz, I.; González-Benito, J. Preparation and Characterization of Polymer Composite Materials Based on PLA/TiO2 for Antibacterial Packaging. Polymers (Basel). 2018, 10 (12). DOI: 10.3390/polym10121365.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.