57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Amphiphilicity evolution in self-assembled carbon-based nanostructures for stabilizing different types of Pickering emulsions

, , &
Pages 13-21 | Received 28 Apr 2023, Accepted 11 Nov 2023, Published online: 20 Nov 2023

References

  • Lisuzzo, L.; Cavallaro, G.; Milioto, S.; Lazzara, G. Pickering Emulsions Stabilized by Halloysite Nanotubes: From General Aspects to Technological Applications. Adv. Mater. Inter. 2022, 9(10), 2102346. DOI: 10.1002/admi.202102346.
  • Chen, L. Y.; Yu, S. Z.; Wang, H.; Xu, J.; Liu, C. C.; Chong, W. H.; Chen, H. Y. General Methodology of Using Oil-in-Water and Water-In-Oil Emulsions for Coiling Nanofilaments. J. Am. Chem. Soc. 2013, 135(2), 835–843. DOI: 10.1021/ja310405d.
  • Noel, A.; Faucheu, J.; Rieu, M.; Viricelle, J.; Bourgeat-Lami, E. Tunable Architecture for Flexible and Highly Conductive Graphene-Polymer Composites. Compos. Sci. Technol. 2014, 95, 82–88. DOI: 10.1016/j.compscitech.2014.02.013.
  • Wan, W. B.; Zhao, Z. B.; Hughes, T. C.; Qian, B. Q.; Peng, S. H.; Hao, X. J.; Qiu, J. S. Graphene Oxide liquid Crystal Ickering Emulsions and Their Assemblies. Carbon. 2015, 85, 16–23. DOI: 10.1016/j.carbon.2014.12.058.
  • Lin, K. Y. A.; Yang, H. T.; Petit, C.; Lee, W. Magnetically Controllable Pickering Emulsion Prepared by a Reduced Graphene Oxide-Iron Oxide Composite. J. Colloid. Interface. Sci. 2015, 438, 296–305. DOI: 10.1016/j.jcis.2014.10.015.
  • Kim, H.; Ahn, K. H.; Lee, S. J. Conductive Poly(high internal phase emulsion) Foams Incorporated with Polydopamine-Coated Carbon Nanotubes. Polymer. 2017, 110, 187–195. DOI: 10.1016/j.polymer.2017.01.007.
  • Hao, Y. J.; Hao, S. J.; Li, Q. B.; Liu, X.; Zou, H. B.; Yang, H. Q. Metal-Nanoparticles-Loaded Ultrathin g-C3N4 Nanosheets at Liquid–Liquid Interfaces for Enhanced Biphasic Catalysis. ACS Appl. Mater. Interfaces. 2021, 13(39), 47236–47243. DOI: 10.1021/acsami.1c13903.
  • Wu, H.; Yi, W. Y.; Chen, Z.; Wang, H. T.; Du, Q. G. Janus Graphene Oxide Nanosheets Prepared via Pickering Emulsion Template. Carbon. 2015, 93, 473–483. DOI: 10.1016/j.carbon.2015.05.083.
  • Wu, T.; Wang, H. T.; Jing, B. X.; Liu, F.; Burns, P. C.; Na, C. Z. Multi-Body Coalescence in Pickering Emulsions. Nat. Commun. 2015, 6(1), 5929. DOI: 10.1038/ncomms6929.
  • Xu, J. S.; Markus, A. The Performance of Nanoparticulate Graphitic Carbon Nitride as an Amphiphile. J. Am. Chem. Soc. 2017, 139(17), 6029–6029. DOI: 10.1021/jacs.6b11346.
  • Zia, A.; Pentzer, E.; Thickett, S.; Kempe, K. Advances and Opportunities of Oil-in-Oil Emulsions. ACS Appl. Mater. Interfaces. 2020, 12(35), 38845–38861. DOI: 10.1021/acsami.0c07993.
  • Aveyard, R.; Binks, B. P.; Clint, J. H. Emulsions Stabilised Solely by Colloidal Particles. Adv. Colloid Interface Sci. 2003, 100-102, 503–546. DOI: 10.1016/S0001-8686(02)00069-6.
  • Yu, C.; Fan, L. M.; Yang, J.; Shan, Y. Y.; Qiu, J. S. Phase-Reversal Emulsion Catalysis with CNT–TiO 2 Nanohybrids for the Selective Oxidation of Benzyl Alcohol. Chem. Eur. J. 2013, 19(48), 16192–16195. DOI: 10.1002/chem.201300949.
  • Briggs, N. M.; Weston, J. S.; Li, B.; Venkataramani, D.; Aichele, C. P.; Harwell, J. H.; Crossley, S. P. Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions. Langmuir. 2015, 31(48), 13077–13084. DOI: 10.1021/acs.langmuir.5b03189.
  • Wang, J.; Yang, F.; Tan, J. J.; Liu, G. P.; Xu, J.; Sun, D. J. Pickering Emulsions Stabilized by a Lipophilic Surfactant and Hydrophilic Platelike Particles. Langmuir. 2010, 26(8), 5397–5404. DOI: 10.1021/la903817b.
  • Woodward, R. T.; Fam, D. W. H.; Anthony, D. B.; Hong, J. D.; McDonald, T. O.; Petit, C.; Shaffer, M. S. P.; Bismarck, A. Hierarchically Porous Carbon Foams from Pickering High Internal Phase Emulsions. Carbon. 2016, 101, 253–260. DOI: 10.1016/j.carbon.2016.02.002.
  • Gonzalez-Jordan, A.; Nicolai, T.; Benyahia, L. Enhancement of the Particle Stabilization of Water-In-Water Emulsions by Modulating the Phase Preference of the Particles. J. Colloid. Interface. Sci. 2018, 530, 505–510. DOI: 10.1016/j.jcis.2018.04.088.
  • Shan, Y. Y.; Yu, C.; Yang, J.; Dong, Q.; Fan, X. M.; Qiu, J. S. Thermodynamically Stable Pickering Emulsion Configured with Carbon-Nanotube-Bridged Nanosheet-Shaped Layered Double Hydroxide for Selective Oxidation of Benzyl Alcohol. ACS Appl. Mater. Interfaces. 2015, 7(22), 12203–12209. DOI: 10.1021/acsami.5b02595.
  • Dao, T. D.; Jeong, H. M. A Pickering Emulsion Route to a Stearic Acid/Graphene Core-Shell Composite Phase Change Material. Carbon. 2016, 99, 49–57. DOI: 10.1016/j.carbon.2015.12.009.
  • Chen, Y. H.; Wan, Y. L.; Shi, X. T.; Jin, M.; Cheng, W. H.; Ren, L.; Wang, Y. J. Hierarchical and Reversible Assembly of Graphene Oxide/Polyvinyl Alcohol Hybrid Stabilized Pickering Emulsions and Their Templating for Macroporous Composite Hydrogels. Carbon. 2017, 111, 38–47. DOI: 10.1016/j.carbon.2016.09.059.
  • Novaes, F. D.; Rurali, R.; Ordejon, P. Electronic Transport Between Graphene Layers Covalently Connected by Carbon Nanotubes. ACS Nano. 2010, 4(12), 7596–7602. DOI: 10.1021/nn102206n.
  • Maarouf, A. A.; Kasry, A.; Chandra, B.; Martyna, G. A Graphene-carbon Nanotube Hybrid Material for Photovoltaic Applications. Carbon. 2016, 102, 74–80. DOI: 10.1016/j.carbon.2016.02.024.
  • Kim, J. Y.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. X. Graphene Oxide Sheets at Interfaces. J. Am. Chem. Soc. 2010, 132(23), 8180–8186. DOI: 10.1021/ja102777p.
  • Wang, B. C.; Liu, Y. N.; Li, W.; Gao, Y. Novel Pickering Stabilizer Constituted by Graphene Oxide and Carbon Nanotubes for Fabricating Poly(methyl methacrylate) Nanocomposites. Polym. Eng. Sci. 2018, 58(11), 1975–1980. DOI: 10.1002/pen.24807.
  • Wang, B. C.; Dou, S.; Gao, Y.; Li, W. Structure and Electrically Conductive Properties of Porous PAN-Based Nanocomposites Prepared by Pickering Emulsion Template Method. J. Appl. Polym. Sci. 2020, 137(35), e49017. DOI: 10.1002/app.49017.
  • Wang, B. C.; Liang, P. F.; Li, W.; Gao, Y. Electrical Conductivity of Poly(methyl methacrylate) Nanocomposites Containing Interconnected Carbon Nanohybrid Network Based on Pickering Emulsion Strategy. Soft. Mater. 2021, 19(4), 468–479. DOI: 10.1080/1539445X.2020.1868511.
  • Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano. 2010, 4(8), 4806–4814. DOI: 10.1021/nn1006368.
  • Huang, Z. D.; Zhang, B.; Liang, R.; Zheng, Q. B.; Oh, S. W.; Lin, X. Y.; Yousefi, N.; Kim, J. K. Effects of Reduction Process and Carbon Nanotube Content on the Supercapacitive Performance of Flexible Graphene Oxide Papers. Carbon. 2012, 50(11), 4239–4251. DOI: 10.1016/j.carbon.2012.05.006.
  • Hermant, M. C.; Verhulst, M.; Kyrylyuk, A. V.; Klumperman, B.; Koning, C. E. The Incorporation of Single-Walled Carbon Nanotubes into Polymerized High Internal Phase Emulsions to Create Conductive Foams with a Low Percolation Threshold. Compos. Sci. Technol. 2009, 69(5), 656–662. DOI: 10.1016/j.compscitech.2008.12.013.
  • Heise, M. S.; Martin, G. C. Curing Mechanism and Thermal Properties of Epoxy-Imidazole Systems. Macromolecules. 1989, 22(1), 99–104. DOI: 10.1021/ma00191a020.
  • Wang, H. L.; O’Malley, R. M.; Fernandez, J. E. Electrochemical and Chemical Polymerization of Imidazole and Some of Its Derivatives. Macromolecules. 1994, 27(4), 893–901. DOI: 10.1021/ma00082a003.
  • Gevaerd, A.; Blaskievicz, S. F.; Zarbin, A. J. G.; Orth, E. S.; Bergamini, M. F.; Marcolino-Junior, L. H. Nonenzymatic Electrochemical Sensor Based on Imidazole-Functionalized Graphene Oxide for Progesterone Detection. Biosens. Bioelectron. 2018, 112, 108–113. DOI: 10.1016/j.bios.2018.04.044.
  • Gao, J.; Liu, F.; Liu, Y. L.; Ma, N.; Wang, Z. Q.; Zhang, X. Environment-Friendly Method to Produce Graphene That Employs Vitamin C and Amino Acid. Chem. Mater. 2010, 22(7), 2213–2218. DOI: 10.1021/cm902635j.
  • Yuan, F. Y.; Zhang, H. B.; Li, X. F.; Ma, H. L.; Li, X. Z.; Yu, Z. Z. In situ Chemical Reduction and Functionalization of Graphene Oxide for Electrically Conductive Phenol Formaldehyde Composites. Carbon. 2014, 68, 653–661. DOI: 10.1016/j.carbon.2013.11.046.
  • Ricciardi, F.; Romanchick, W. A.; Joullie, M. M. Mechanism of Imidazole Catalysis in the Curing of Epoxy Resins. J. Polym. Sci. Pol. Chem. 1983, 21(5), 1475–1490. DOI: 10.1002/pol.1983.170210520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.