82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancement on electro-response of gelatin hydrogels with grafted polar groups

, , , &
Pages 28-40 | Received 11 Jul 2023, Accepted 23 Nov 2023, Published online: 05 Dec 2023

References

  • Nelson, A. Engineering Interactions. Nat. Mater. 2008, 7(7), 523. DOI: 10.1038/nmat2214.
  • Zhou, B. Z.; Li, C. C.; Zhou, Y. F.; Liu, Z. X.; Gao, X.; Wang, X. Q.; Jiang, L.; Tian, M. W.; Zhou, F. L.; Jerrams, S., et al. Compos. Sci. Technol. 2022, 224, 109478. DOI: 10.1016/j.compscitech.2022.109478.
  • Zhao, T.; Guan, X. J.; Tang, W. J.; Ma, Y.; Zhang, H. X. Preparation of Temperature Sensitive Molecularly Imprinted Polymer for Solid-Phase Microextraction Coatings on Stainless Steel Fiber to Measure Ofloxacin. Anal. Chim. Acta. 2015, 853, 668. DOI: 10.1016/j.aca.2014.10.019.
  • Zhang, H. J.; Pang, X. J.; Qi, Y. PH-Sensitive Graphene Oxide/Sodium Alginate/Polyacrylamide Nanocomposite Semi-IPN Hydrogel with Improved Mechanical Strength. Rsc. Adv. 2015, 5, 89083. DOI: 10.1039/C5RA19637J.
  • Yan, Y. S.; Santaniello, T.; Bettini, L. G.; Minnai, C.; Bellacicca, A.; Porotti, R.; Denti, I.; Faraone, G.; Merlini, M.; Lenardi, C., et al. Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes. Adv. Mater. 2017, 29, 1606109. DOI: 10.1002/adma.201606109.
  • Melzer, M.; Mönch, J. I.; Makarov, D.; Lin, G. G.; Makarov, D.; Zabila, Y.; Bermúdez, G. S. C.; Karnaushenko, D.; Baunack, S.; Bahr, F., et al. Wearable Magnetic Field Sensors for Flexible Electronics. Adv. Mater. 2014, 27, 1274. DOI: 10.1002/adma.201405027.
  • Pavluchenko, A. S.; Mamykin, A. V.; Kukla, A. L.; Konoshchuk, N. V.; Posudievsky, O. Y.; Koshechko, V. G. Estimation of Multicomponent Organic Solvent Vapor Mixture Composition with Electroconducting Polymer Chemiresistors. Sens. Actuators B. 2016, 232, 203. DOI: 10.1016/j.snb.2016.03.111.
  • Han, D.; Li, J.; Tan, W. H. CRISPR propels a smart hydrogel. Science. 2019, 365, 754. DOI: 10.1126/science.aay4198.
  • Zhang, Y. Y.; Huang, Y. S. Rational Design of Smart Hydrogels for Biomedical Applications. Front. Chem. 2021, 8, 615665. DOI: 10.3389/fchem.2020.615665.
  • Sun, H.; He, Y.; Wang, Z. H.; Liang, Q. L. An Insight into Skeletal Networks Analysis for Smart Hydrogels. Adv. Funct. Mater. 2022, 32, 2108489. DOI: 10.1002/adfm.202108489.
  • Jiang, L.; Wang, Y. H.; Wang, X. Q.; Ning, F. G.; Wen, S. P.; Zhou, Y. F.; Chen, S. J.; Betts, A.; Jerrams, S.; Zhou, F. L. Electrohydrodynamic Printing of a Dielectric Elastomer Actuator and Its Application in Tunable Lenses. Compos. Part A. 2021, 147, 106461. DOI: 10.1016/j.compositesa.2021.106461.
  • Tungkavet, T.; Seetapan, N.; Pattavarakorn, D.; Sirivat, A. Graphene/Gelatin Hydrogel Composites with High Storage Modulus Sensitivity for Using as Electroactive Actuator: Effects of Surface Area and Electric Field Strength. A. Sirivat. Polymer. 2015, 70, 242. DOI: 10.1016/j.polymer.2015.06.027.
  • Milani, G. M.; Coutinho, I. T.; Ambrosio, F. N.; Do Nascimento, M. H. M.; Lombello, C. B.; Venancio, E. C.; Champeau, M. Poly(acrylic Acid)/Polypyrrole Interpenetrated Network as Electro-Responsive Hydrogel for Biomedical Applications. J. Appl. Polym. Sci. 2022, 139(18), 52091. DOI: 10.1002/app.52091.
  • Chen, J. L.; Gao, L. X.; Han, X. W.; Chen, T.; Luo, J.; Liu, K. Q.; Gao, Z. W.; Zhang, W. Q. Preparation and Electro-Response of Chitosan-g-Poly (Acrylic Acid) Hydrogel Elastomers with Interpenetrating Network. Mater. Chem. Phys. 2016, 169, 105. DOI: 10.1016/j.matchemphys.2015.11.036.
  • Niamlang, S.; Sirivat, A. Electric Field Assisted Transdermal Drug Delivery from Salicylic Acid-Loaded Polyacrylamide Hydrogels. Drug. Deliv. 2009, 16, 378. DOI: 10.1080/10717540903090601.
  • Wada, N.; Nakamura, M.; Tanaka, Y.; Kanamura, K.; Yamashita, K. Formation of Calcite Thin Films by Cooperation of Polyacrylic Acid and Self-Generating Electric Field Due to Aligned Dipoles of Polarized Substrates. J. Colloid Interf. Sci. 2009, 330, 374. DOI: 10.1016/j.jcis.2008.06.063.
  • Kunanuruksapong, R.; Sirivat, A. Electrical Properties and Electromechanical Responses of Acrylic Elastomers and Styrene Copolymers: Effect of Temperature. Appl. Phys. A. Mater. 2008, 92, 313. DOI: 10.1007/s00339-008-4513-3.
  • Kim, S. J.; Kim, H. I.; Park, S. J.; Kim, S. I. Shape Change Characteristics of Polymer Hydrogel Based on Polyacrylic Acid/Poly(vinyl Sulfonic Acid) in Electric Fields. Sensor Actuat A. Phys. 2004, 115, 146. DOI: 10.1016/j.sna.2004.04.020.
  • Kishi, R.; Hasebe, M.; Hara, M.; Osada, Y. Mechanism and Process of Chemomechanical Contraction of Polyelectrolyte Gels Under Electric Field. Polym. Adv. Technol. 1990, 1, 19–25. DOI: 10.1002/pat.1990.220010104.
  • Tungkavet, T.; Sirivat, A.; Seetapan, N.; Pattavarakorn, D. Stress Relaxation Behavior of (Ala-Gly-Pro-Arg-Gly-Glu-4Hyp-Gly-Pro-) Gelatin Hydrogels Under Electric Field: Time-Electric Field Superposition. Polymer. 2013, 54, 2414. DOI: 10.1016/j.polymer.2013.02.045.
  • Kim, S. J.; Shin, S. R.; Lee, S. M.; Kim, I. Y.; Kim, S. I. Electromechanical Properties of Hydrogels Based on Chitosan and Poly(hydroxyethyl Methacrylate) in NaCl Solution. Smart Mater. Struct. 2004, 13, 1036. DOI: 10.1088/0964-1726/13/5/008.
  • Kim, S. J.; Yoon, S. G.; Lee, Y. H.; Kim, S. I. Bending Behavior of Hydrogels Composed of Poly(methacrylic Acid) and Alginate by Electrical Stimulus. Polym. Int. 2004, 53, 1456. DOI: 10.1002/pi.1560.
  • Gao, L. X.; Chen, J. L.; Han, X. W.; Yan, S. X.; Zhang, Y.; Zhang, W. Q.; Gao, Z. W. Electro-Response Characteristic of Starch Hydrogel Crosslinked With Glutaraldehyde. J. Biomat. Sci. Polym. E. 2015, 26, 545. DOI: 10.1080/09205063.2015.1037587.
  • Lin, S. T.; Yuk, H.; Zhang, T.; Parada, G. A.; Koo, H.; Yu, C. J.; Zhao, X. H. Stretchable Hydrogel Electronics and Devices. Adv. Mater. 2015, 28, 4497. DOI: 10.1002/adma.201504152.
  • Awasthi, S. K.; Bajpai, S. K.; Utiye, A. S.; Mishra, B. Gelatin/Poly(aniline) Composite Films: Synthesis and Characterization. J. Macromol. Sci. 2016, 53, 301. DOI: 10.1080/10601325.2016.1151650.
  • Pillay, V.; Tsai, T. S.; Choonara, Y. E.; du Toit, L. C.; Kumar, P.; Modi, G.; Naidoo, D.; Tomar, L. K.; Tyagi, C.; Ndesendo, V. M. K. A Review of Integrating Electroactive Polymers as Responsive Systems for Specialized Drug Delivery Applications. J. Biomed. Mater. Res. A. 2013, 102, 2039. DOI: 10.1002/jbm.a.34869.
  • Bae, W. J.; Kim, K. H.; Park, Y. H.; Jo, W. H. A Novel Water-Soluble and Self-Doped Conducting Polyaniline Graft copolymerElectronic Supplementary Information (ESI) Available: Schematic Diagrams; XPS and FTIR Spectra; GPC Profile. Chem. Commun. 2003, 22(22), 2768. DOI: 10.1039/b309346h.
  • Tanigo, T.; Takaoka, R.; Tabata, Y. Sustained Release of Water-Insoluble Simvastatin from Biodegradable Hydrogel Augments Bone Regeneration. J. Control Release. 2010, 143(2), 201. DOI: 10.1016/j.jconrel.2009.12.027.
  • Deng, L. D.; Qi, H. Y.; Yao, C. M.; Feng, M. H.; Dong, A. J. Investigation on the Properties of Methoxy Poly(ethylene Glycol)/Chitosan Graft Co-Polymers. J. Biomater. Sci. Polym. Ed. 2007, 18, 1575. DOI: 10.1163/156856207794761943.
  • Okay, O. Hydrogel Sensor. Actuat. 2009, 6, 1.
  • Ahmed, E. M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6(2), 105. DOI: 10.1016/j.jare.2013.07.006.
  • Lin, S. B.; Chen, C. C.; Chen, L. C.; Chen, H. H. The Bioactive Composite Film Prepared from Bacterial Cellulose and Modified by Hydrolyzed Gelatin Peptide. J. Biomater. Appl. 2015, 29, 1428. DOI: 10.1177/0885328214568799.
  • Marcasuzaa, P.; Reynaud, S.; Ehrenfeld, F.; Khoukh, A.; Desbrieres, J. Chitosan-Graft-Polyaniline-Based Hydrogels: Elaboration and Properties. J. Desbrieres. Biomacromolecules. 2010, 11(6), 1684. DOI: 10.1021/bm100379z.
  • Ramaprasad, A. T.; Latha, D.; Rao, V. Synthesis and Characterization of Polypyrrole Grafted Chitin. J. Phys. Chem. Solids. 2017, 104, 169. DOI: 10.1016/j.jpcs.2017.01.017.
  • Gong, C. Y.; Shi, S.; Dong, P. W.; Kan, B.; Gou, M. L.; Wang, X. H.; Li, X. Y.; Luo, F.; Zhao, X.; Wei, Y. Q., et al. Synthesis and Characterization of PEG-PCL-PEG Thermosensitive Hydrogel. Int. J. Pharm. 2009, 365, 89. DOI: 10.1016/j.ijpharm.2008.08.027.
  • Hiamtup, P.; Sirivat, A.; Jamieson, A. M. Electrorheological Properties of Polyaniline Suspensions: Field-induced Liquid to Solid Transition and Residual Gel Structure. J. Colloid Interf. Sci. 2006, 295, 270. DOI: 10.1016/j.jcis.2005.07.067.
  • Kussmaul, B.; Risse, S.; Kofod, G.; Waché, R.; Wegener, M.; McCarthy, D. N.; Krüger, H.; Gerhard, R. Enhancement of Dielectric Permittivity and Electromechanical Response in Silicone Elastomers: Molecular Grafting of Organic Dipoles to the Macromolecular Network. Adv. Funct. Mater. 2011, 21, 4589. DOI: 10.1002/adfm.201100884.
  • Wang, J. W.; Shen, Q. D.; Yang, C. Z.; Zhang, Q. M. High Dielectric Constant Composite of P(VDF−TrFE) with Grafted Copper Phthalocyanine Oligomer. Macromolecules. 2004, 37(6), 2294. DOI: 10.1021/ma035685c.
  • Ananthaiah, J.; Rajeswari, M.; Sastry, V. S. S.; Dabrowski, R.; Dhara, S. Effect of Electric Field on the Rheological and Dielectric Properties of a Liquid Crystal Exhibiting Nematic-To-Smectic-A Phase Transition. Eur. Phys. J. E. 2011, 34, 74. DOI: 10.1140/epje/i2011-11074-y.
  • Chang, W. S.; Link, S.; Yethiraj, A.; Barbara, P. F. Single Molecule Spectroscopy of Conjugated Polymer Chains in an Electric Field-Aligned Liquid Crystal. J. Phys. Chem. 2008, 112(2), 448. DOI: 10.1021/jp076345m.
  • Tungkavet, T.; Seetapan, N.; Pattavarakorn, D.; Sirivat, A. Improvements of Electromechanical Properties of Gelatin Hydrogels by Blending with Nanowire Polypyrrole: Effects of Electric Field and Temperature. Polym. Int. 2012, 61(5), 825. DOI: 10.1002/pi.4149.
  • Marandi, G. B.; Hosseinzadeh, H. Gelatin-g-Poly(sodium Acrylate-Co-Acrylamide)/kaolin Superabsorbent Hydrogel Composites: Synthesis, Characterisation and Swelling Behaviour. Polym. Polym. Compos. 2007, 15, 395. DOI: 10.1177/096739110701500507.
  • Wang, P.; Tan, K. L.; Zhang, F.; Kang, E. T.; Neoh, K. G. Synthesis and Characterization of Poly(ethylene Glycol)-Grafted Polyaniline. Chem. Mater. 2001, 13(2), 581. DOI: 10.1021/cm000829c.
  • Tian, M.; Yan, B. Y.; Yao, Y.; Zhang, L. Q.; Nishi, T.; Ning, N. Y. Largely Improved Actuation Strain at Low Electric Field of Dielectric Elastomer by Combining Disrupting Hydrogen Bonds with Ionic Conductivity. J. Mater. Chem. C. 2014, 2, 8388. DOI: 10.1039/C4TC01140F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.