70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Wood fiber aerogel-based super hydrophilic and lipophobic porous structure as a photothermal material for efficient solar steam

, , , , & ORCID Icon
Pages 54-63 | Received 08 Jun 2023, Accepted 24 Nov 2023, Published online: 06 Dec 2023

References

  • Klimenko, V. V.; Ratner, S. V.; Tereshin, A. G. Constraints Imposed by Key-material Resources on Renewable Energy Development. Renew. Sust. Energ. Rev. 2021, 144. DOI: 10.1016/j.rser.2021.111011.
  • Sen, S.; Ganguly, S. Opportunities, Barriers and Issues with Renewable Energy Development – A Discussion. Renew. Sust. Energ. Rev. 2017, 69, 1170–1181. DOI: 10.1016/j.rser.2016.09.137.
  • Zhang, H.; Yan, J. Co-Benefits of Renewable Energy Development: A Brighter Sky Brings Greater Renewable Power. Joule. 2022, 6(6), 1142–1144. DOI: 10.1016/j.joule.2022.05.017.
  • Gude, V. G. Desalination and Water Reuse to Address Global Water Scarcity. Rev. Environ. Sci. Biotechnol. 2017, 16(4), 591–609. DOI: 10.1007/s11157-017-9449-7.
  • Huang, Y.; Cheng, H.; Qu, L. Emerging Materials for Water-Enabled Electricity Generation. ACS Mater. Lett. 2021, 3(2), 193–209. DOI: 10.1021/acsmaterialslett.0c00474.
  • Shoaib, M.; Siddiqui, I.; Rehman, S.; Khan, S.; Alhems, L. M. Assessment of Wind Energy Potential Using Wind Energy Conversion System. J. Clean. Prod. 2019, 216, 346–360. DOI: 10.1016/j.jclepro.2019.01.128.
  • Guillou, N.; Chapalain, G.; Neill, S. P. The Influence of Waves on the Tidal Kinetic Energy Resource at a Tidal Stream Energy Site. Appl. Energ. 2016, 180, 402–415. DOI: 10.1016/j.apenergy.2016.07.070.
  • Parsons, J.; Buongiorno, J.; Corradini, M.; Petti, D. A Fresh Look at Nuclear Energy. Science. 2019, 363(6423), 105. DOI: 10.1126/science.aaw5304.
  • Darre, N. C.; Toor, G. S. Desalination of Water: A Review. Curr. Poll. Rep. 2018, 4(2), 104–111. DOI: 10.1007/s40726-018-0085-9.
  • Dincer, I.; Acar, C. Innovation in Hydrogen Production. Int. J. Hydrog. Energ. 2017, 42(22), 14843–14864. DOI: 10.1016/j.ijhydene.2017.04.107.
  • Astakhov, O.; Agbo, S. N.; Welter, K.; Smirnov, V.; Rau, U.; Merdzhanova, T. Storage Batteries in Photovoltaic–Electrochemical Device for Solar Hydrogen Production. J. Power Sour. 2021, 509, 230367. DOI: 10.1016/j.jpowsour.2021.230367.
  • Duta, A.; Enesca, A.; Bogatu, C.; Gyorgy, E. Solar-Active Photocatalytic Tandems. A Compromise in the Photocatalytic Processes Design. Mater. Sci. Semicond. Process. 2016, 42, 94–97. DOI: 10.1016/j.mssp.2015.08.046.
  • Wu, J.; Han, Y.; Hou, H.; Sun, Y. Optimization of Solar Field Layout and Flow Velocity in a Solar-Aided Power Generation System. Energy. 2020, 208, 118344. DOI: 10.1016/j.energy.2020.118344.
  • Fan, Y.; Tian, Z.; Wang, F.; He, J.; Ye, X.; Zhu, Z.; Sun, H.; Liang, W.; Li, A. Enhanced Solar-To-Heat Efficiency of Photothermal Materials Containing an Additional Light-Reflection Layer for Solar-Driven Interfacial Water Evaporation. ACS Appl. Energ. Mater. 2021, 4(3), 2932–2943. DOI: 10.1021/acsaem.1c00391.
  • Wu, X.; Chen, G. Y.; Owens, G.; Chu, D.; Xu, H. Photothermal Materials: A Key Platform Enabling Highly Efficient Water Evaporation Driven by Solar Energy. Mater. Today Energ. 2019, 12, 277–296. DOI: 10.1016/j.mtener.2019.02.001.
  • Chen, G.; Sun, J.; Peng, Q.; Sun, Q.; Wang, G.; Cai, Y.; Gu, X.; Shuai, Z.; Tang, B. Z. Biradical-Featured Stable Organic-Small-Molecule Photothermal Materials for Highly Efficient Solar-Driven Water Evaporation. Adv. Mater. 2020, 32(29), e1908537. DOI: 10.1002/adma.201908537.
  • Luo, Y.; Fu, B.; Shen, Q.; Hao, W.; Xu, J.; Min, M.; Liu, Y.; An, S.; Song, C.; Tao, P., et al. Patterned Surfaces for Solar-Driven Interfacial Evaporation. ACS Appl. Mater. Interfaces. 2019, 11(7), 7584–7590. DOI: 10.1021/acsami.8b20653.
  • Zhao, F.; Guo, Y.; Zhou, X.; Shi, W.; Yu, G. Materials for Solar-Powered Water Evaporation. Nat. Rev. Mater. 2020, 5(5), 388–401. DOI: 10.1038/s41578-020-0182-4.
  • Yang, T.; Wang, S.; Benetti, D.; Wang, K.; Sun, Y.; Ji, H.; Qian, T.; Yan, C.; Rosei, F. Efficient Solar Domestic and Industrial Sewage Purification via Polymer Wastewater Collector. Chem. Eng. J. 2022, 428. DOI: 10.1016/j.cej.2021.131199.
  • Sheng, C.; Yao, C. Review on Self-Heating of Biomass Materials: Understanding and Description. Energy. Fuels. 2022, 36(2), 731–761. DOI: 10.1021/acs.energyfuels.1c03369.
  • Srivastava, R. K.; Shetti, N. P.; Reddy, K. R.; Kwon, E. E.; Nadagouda, M. N.; Aminabhavi, T. M. Biomass Utilization and Production of Biofuels from Carbon Neutral Materials. Environ. Pollut. 2021, 276, 116731. DOI: 10.1016/j.envpol.2021.116731.
  • Zhao, Z.; To, S.; Wang, J.; Zhang, G.; Weng, Z. A Review of Micro/Nanostructure Effects on the Machining of Metallic Materials. Mater. Des. 2022, 224. DOI: 10.1016/j.matdes.2022.111315.
  • Garcia, G.; Sanchez-Palencia, P.; Palacios, P.; Wahnon, P. Transition Metal-Hyperdoped InP Semiconductors as Efficient Solar Absorber Materials. Nanomaterials (Basel). 2020, 10(2), 283. DOI: 10.3390/nano10020283.
  • Selikhov, Y.; Klemeš, J. J.; Kapustenko, P.; Arsenyeva, O. The Study of Flat Plate Solar Collector with Absorbing Elements from a Polymer Material. Energy. 2022, 256, 124677. DOI: 10.1016/j.energy.2022.124677.
  • Bahauddin, S. M.; Robatjazi, H.; Thomann, I. Broadband Absorption Engineering to Enhance Light Absorption in Monolayer MoS2. ACS Photon. 2016, 3(5), 853–862. DOI: 10.1021/acsphotonics.6b00081.
  • Si, Y.; Dong, Z.; Jiang, L. Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials. ACS Cent. Sci. 2018, 4(9), 1102–1112. DOI: 10.1021/acscentsci.8b00504.
  • Chen, L.; Mu, X.; Guo, Y.; Lu, H.; Yang, Y.; Xiao, C.; Hasi, Q. MXene-Doped Kapok Fiber Aerogels with Oleophobicity for Efficient Interfacial Solar Steam Generation. J. Colloid. Interface. Sci. 2022, 626, 35–46. DOI: 10.1016/j.jcis.2022.06.143.
  • Salisbury, C.; O’Cathain, A.; Edwards, L.; Thomas, C.; Gaunt, D.; Hollinghurst, S.; Nicholl, J.; Large, S.; Yardley, L.; Lewis, G., et al. Effectiveness of an Integrated Telehealth Service for Patients with Depression: A Pragmatic Randomised Controlled Trial of a Complex Intervention. Lancet Psychiat. 2016, 3(6), 515–525. DOI: 10.1016/S2215-0366(16)00083-3.
  • Chang, C.; Yang, C.; Liu, Y.; Tao, P.; Song, C.; Shang, W.; Wu, J.; Deng, T. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation. ACS Appl. Mater. Interfaces. 2016, 8(35), 23412–23418. DOI: 10.1021/acsami.6b08077.
  • Liu, J.; Chen, X.; Yang, H.; Tang, J.; Miao, R.; Liu, K.; Fang, Y. Gel-Emulsion Templated Polymeric Aerogels for Solar-Driven Interfacial Evaporation and Electricity Generation. Mater. Chem. Front. 2021, 5(4), 1953–1961. DOI: 10.1039/D0QM00793E.
  • Zhang, P.; Piao, X.; Guo, H.; Xiong, Y.; Cao, Y.; Yan, Y.; Wang, Z.; Jin, C. A Multi-Function Bamboo-Based Solar Interface Evaporator for Efficient Solar Evaporation and Sewage Treatment. Ind. Crops Prod. 2023, 200, 116823. DOI: 10.1016/j.indcrop.2023.116823.
  • Hu, B.; Wang, K.; Han, L.; Zhou, B.; Yang, J.; Li, S. Pomegranate Seed Oil Stabilized with Ovalbumin Glycated by Inulin: Physicochemical Stability and Oxidative Stability. Food Hydrocoll. 2020, 102, 105602. DOI: 10.1016/j.foodhyd.2019.105602.
  • Wang, S.; Xiao, C.; Lu, S.; Lu, H.; Hasi, Q.-M.; Zhang, Y.; Luo, X.; Chen, L. Integrated Solar Evaporator with Salt Resistance and Lipophobicity Derived from Waste Newspapers for Efficient Desalination. ACS Sustain. Chem. Eng. 2023, 11(6), 2586–2598. DOI: 10.1021/acssuschemeng.2c06869.
  • Zhang, Q.; Xu, W.; Wang, X. Carbon Nanocomposites with High Photothermal Conversion Efficiency. Sci. China Mater. 2018, 61(7), 905–914.
  • Gao, M.; Zhu, L.; Peh, C. K.; Ho, G. W. Solar Absorber Material and System Designs for Photothermal Water Vaporization Towards Clean Water and Energy Production. Energ. Environ. Sci. 2019, 12(3), 841–864. DOI: 10.1039/C8EE01146J.
  • Xie, H.; Pan, J.; Wei, B.; Feng, J.; Liao, S.; Li, X.; Yu, Y. Anti-Fouling Anion Exchange Membrane for Electrodialysis Fabricated by In-Situ Interpenetration of the Ionomer to Gradient Cross-Linked Network of Ca-Na Alginate. Desalination. 2021, 505, 115005. DOI: 10.1016/j.desal.2021.115005.
  • Ma, C. Y.; Wang, H. M.; Wen, J. L.; Shi, Q.; Wang, S. F.; Yuan, T. Q.; Sun, R. C. Structural Elucidation of Lignin Macromolecule from Abaca During Alkaline Hydrogen Peroxide Delignification. Int. J. Biol. Macromol. 2020, 144, 596–602. DOI: 10.1016/j.ijbiomac.2019.12.080.
  • Yang, Z.; Yan, J.; Wang, F. Pore Structure of Kapok Fiber. Cellulose. 2018, 25(6), 3219–3227. DOI: 10.1007/s10570-018-1767-6.
  • Zhao, X.; Zha, X.-J.; Tang, L.-S.; Pu, J.-H.; Ke, K.; Bao, R.-Y.; Liu, Z.-Y.; Yang, M.-B.; Yang, W. Self-Assembled Core-Shell Polydopamine@MXene with Synergistic Solar Absorption Capability for Highly Efficient Solar-To-Vapor Generation. Nano Res. 2019, 13(1), 255–264. DOI: 10.1007/s12274-019-2608-0.
  • Chen, L.; Jiang, X.; Qu, N.; Lu, H.; Xu, J.; Zhang, Y.; Li, G. Selective Adsorption and Efficient Degradation of Oil Pollution by Microorganisms Immobilized Natural Biomass Aerogels with Aligned Channels. Mater. Today Sustain. 2022, 19, 100208. DOI: 10.1016/j.mtsust.2022.100208.
  • Zhou, J.; Du, E.; He, Y.; Fan, Y.; Ye, Y.; Tang, B. Preparation of Carbonized Kapok Fiber/Reduced Graphene Oxide Aerogel for Oil‐Water Separation. Chem. Eng. Technol. 2020, 43(12), 2418–2427. DOI: 10.1002/ceat.202000168.
  • Qiao, Y.-Q.; Gu, Y.; Meng, Y.-S.; Li, H.-X.; Zhang, B.-W.; Li, J.-Y. Fabrication of Stable MWCNT Bucky Paper for Solar-Driven Interfacial Evaporation by Coupling γ-Ray Irradiation with Borate Crosslinking. Nucl. Sci. Tech. 2021, 32(12). DOI: 10.1007/s41365-021-00978-9.
  • Alfaro-Barajas, A.; Vega-Hincapié, D. J.; Hdz-Garcia, H.; Oliva, J.; Herrera-Trejo, M.; Mtz-Enriquez, A. I. Carbon Monoliths from PET Wastes for Interfacial Solar Evaporation. Mater. Lett. 2021, 294, 129796. DOI: 10.1016/j.matlet.2021.129796.
  • He, J.; Foysal, T. R.; Yang, H.; Islam, M.; Li, L.; Li, W.; Cui, W. A Facile and Low-Cost Method to Improve the Efficiency of Solar Steam Evaporation. Mater. Lett. 2020, 261, 126962. DOI: 10.1016/j.matlet.2019.126962.
  • Yuzhu, W.; Xinyi, L.; Xinyuan, S.; Wei, G.; Kai, Y.; Chunyu, Y.; Fengyu, Q. Turning Waste into Treasure: Carbonized Walnut Shell for Solar-Driven Water Evaporation. Mater. Lett. 2022, 307, 131057. DOI: 10.1016/j.matlet.2021.131057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.