25
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chitosan and (Phenylthio) acetic acid-based ion pair self assembled for temperature and oxidation-responsive drug release

&
Pages 64-79 | Received 05 Sep 2023, Accepted 03 Jan 2024, Published online: 17 Jan 2024

References

  • Nicolle, L.; Journot, C. M. A.; Gerber-Lemaire, S. Chitosan Functionalization: Covalent and Non-Covalent Interactions and Their Characterization. Polymers (Basel). 2021, 13(23), 4118. DOI: 10.3390/polym13234118.
  • Ojeda-Hernández, D. D.; Canales-Aguirre, A. A.; Matias-Guiu, J.; Gomez-Pinedo, U.; Mateos-Díaz, J. C. Potential of Chitosan and Its Derivatives for Biomedical Applications in the Central Nervous System. Front. Bioeng. Biotechnol. 2020, 8. DOI: 10.3389/fbioe.2020.00389.
  • Cheung, R.; Ng, T.; Wong, J.; Chan, W. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs. 2015, 13(8), 5156–5186. DOI: 10.3390/md13085156.
  • Aibani, N.; Rai, R.; Patel, P.; Cuddihy, G.; Wasan, E. K. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics. 2021, 13(10), 1686. DOI: 10.3390/pharmaceutics13101686.
  • Chen, G.; Svirskis, D.; Lu, W.; Ying, M.; Huang, Y.; Wen, J. N -Trimethyl Chitosan Nanoparticles and CSKSSDYQC Peptide: N -Trimethyl Chitosan Conjugates Enhance the Oral Bioavailability of Gemcitabine to Treat Breast Cancer. J. Control Release. 2018, 277, 142–153. DOI: 10.1016/j.jconrel.2018.03.013.
  • Ngo, D.-H.; Kim, S.-K. Antioxidant Effects of Chitin, Chitosan, and Their Derivatives. 2014, pp 15–31. DOI: 10.1016/B978-0-12-800268-1.00002-0.
  • Martins, A.; Facchi, S.; Follmann, H.; Pereira, A.; Rubira, A.; Muniz, E. Antimicrobial Activity of Chitosan Derivatives Containing N-Quaternized Moieties in Its Backbone: A Review. Int. J. Mol. Sci. 2014, 15(11), 20800–20832. DOI: 10.3390/ijms151120800.
  • Karagozlu, M. Z.; Kim, S.-K. Anticancer Effects of Chitin and Chitosan Derivatives. Adv. Food Nutr. Res. 2014, 72, 215–225. DOI: 10.1016/B978-0-12-800269-8.00012-9.
  • Pilipenko, I.; Korzhikov-Vlakh, V.; Sharoyko, V.; Zhang, N.; Schäfer-Korting, M.; Rühl, E.; Zoschke, C.; Tennikova, T. PH-Sensitive Chitosan–Heparin Nanoparticles for Effective Delivery of Genetic Drugs into Epithelial Cells. Pharmaceutics. 2019, 11(7), 317. DOI: 10.3390/pharmaceutics11070317.
  • Nam, J.-P.; Nah, J.-W. Target Gene Delivery from Targeting Ligand Conjugated Chitosan–PEI Copolymer for Cancer Therapy. Carbohydr. Polym. 2016, 135, 153–161. DOI: 10.1016/j.carbpol.2015.08.053.
  • Chen, W.; Li, F.; Tang, Y.; Yang, S.; Li, J.; Yuan, Z.; Liu, Y.; Zhou, X.; Liu, C.; Zhang, X. Stepwise PH-Responsive Nanoparticles for Enhanced Cellular Uptake and On-Demand Intracellular Release of Doxorubicin. Int. J. Nanomed. 2017, 12, 4241–4256. DOI: 10.2147/IJN.S129748.
  • Garg, U.; Chauhan, S.; Nagaich, U.; Jain, N. Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting. Adv. Pharm. Bull. 2019, 9(2), 195–204. DOI: 10.15171/apb.2019.023.
  • Elsabee, M. Z.; Morsi, R. E.; Al-Sabagh, A. M. Surface Active Properties of Chitosan and Its Derivatives. Colloids Surf. B Biointerfaces. 2009, 74(1), 1–16. DOI: 10.1016/j.colsurfb.2009.06.021.
  • Kokkoli, E.; Mardilovich, A.; Wedekind, A.; Rexeisen, E. L.; Garg, A.; Craig, J. A. Self-Assembly and Applications of Biomimetic and Bioactive Peptide-Amphiphiles. Soft Matter. 2006, 2(12), 1015. DOI: 10.1039/b608929a.
  • Kim, J. A.; Yoon, D. Y.; Kim, J.-C. Oxidation-Triggerable Liposome Incorporating Poly(Hydroxyethyl Acrylate-Co-Allyl Methyl Sulfide) as an Anticancer Carrier of Doxorubicin. Cancers (Basel). 2020, 12(1), 180. DOI: 10.3390/cancers12010180.
  • Hedegaard, C. L.; Mata, A. Integrating Self-Assembly and Biofabrication for the Development of Structures with Enhanced Complexity and Hierarchical Control. Biofabrication. 2020, 12(3), 032002. DOI: 10.1088/1758-5090/ab84cb.
  • Zhu, Y.; Wang, X.; Zhang, J.; Meng, F.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Exogenous Vitamin C Boosts the Antitumor Efficacy of Paclitaxel Containing Reduction-Sensitive Shell-Sheddable Micelles in vivo. J. Control Release. 2017, 250, 9–19. DOI: 10.1016/j.jconrel.2017.02.002.
  • Salim, M.; Minamikawa, H.; Sugimura, A.; Hashim, R. Amphiphilic Designer Nano-Carriers for Controlled Release: From Drug Delivery to Diagnostics. Med. Chem. Commun. 2014, 5(11), 1602–1618. DOI: 10.1039/C4MD00085D.
  • Kim, T. H.; Alle, M.; Park, S. C.; Zhao, F.; Long, W.; Samala, S.; Kim, J.-C. Self-Assembly Prepared Using an Ion Pair of Poly(Ethylene Imine) and (Phenylthio) Acetic Acid as a Drug Carrier for Oxidation, Temperature, and NIR-Responsive Release. Chem. Eng. J. 2021, 415, 128954. DOI: 10.1016/j.cej.2021.128954.
  • Yan, R.; Hu, Y.; Liu, F.; Wei, S.; Fang, D.; Shuhendler, A. J.; Liu, H.; Chen, H.-Y.; Ye, D. Activatable NIR Fluorescence/MRI Bimodal Probes for in vivo Imaging by Enzyme-Mediated Fluorogenic Reaction and Self-Assembly. J. Am. Chem. Soc. 2019, 141(26), 10331–10341. DOI: 10.1021/jacs.9b03649.
  • Ren, C.; Zhang, J.; Chen, M.; Yang, Z. Self-Assembling Small Molecules for the Detection of Important Analytes. Chem. Soc. Rev. 2014, 43(21), 7257–7266. DOI: 10.1039/C4CS00161C.
  • Wang, Y.; Weng, J.; Wen, X.; Hu, Y.; Ye, D. Recent Advances in Stimuli-Responsive in situ Self-Assembly of Small Molecule Probes for in vivo Imaging of Enzymatic Activity. Biomater. Sci. 2021, 9(2), 406–421. DOI: 10.1039/D0BM00895H.
  • Liu, X.; Hu, D.; Jiang, Z.; Zhuang, J.; Xu, Y.; Guo, X.; Thayumanavan, S. Multi-Stimuli-Responsive Amphiphilic Assemblies Through Simple Postpolymerization Modifications. Macromolecules. 2016, 49(17), 6186–6192. DOI: 10.1021/acs.macromol.6b01397.
  • Tian, B.; Liu, Y.; Liu, J. Smart Stimuli-Responsive Drug Delivery Systems Based on Cyclodextrin: A Review. Carbohydr. Polym. 2021, 251, 116871. DOI: 10.1016/j.carbpol.2020.116871.
  • Tian, B.; Liu, J. Smart Stimuli-Responsive Chitosan Hydrogel for Drug Delivery: A Review. Int. J. Biol. Macromol. 2023, 235, 123902. DOI: 10.1016/j.ijbiomac.2023.123902.
  • Attwood, D.; Florence, A. T. Surfactant Systems; Springer: Dordrecht, Netherlands, 1983; Vol. 41. DOI: 10.1007/978-94-009-5775-6.
  • López Ruiz, A.; Ramirez, A.; McEnnis, K. Single and Multiple Stimuli-Responsive Polymer Particles for Controlled Drug Delivery. Pharmaceutics. 2022, 14(2), 421. DOI: 10.3390/pharmaceutics14020421.
  • Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-Responsive Nanocarriers for Drug Delivery. Nat. Mater. 2013, 12(11), 991–1003. DOI: 10.1038/nmat3776.
  • Zhuang, J.; Gordon, M. R.; Ventura, J.; Li, L.; Thayumanavan, S. Multi-Stimuli Responsive Macromolecules and Their Assemblies. Chem. Soc. Rev. 2013, 42(17), 7421. DOI: 10.1039/c3cs60094g.
  • Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A Review of Stimuli-Responsive Nanocarriers for Drug and Gene Delivery. J. Control Release. 2008, 126(3), 187–204. DOI: 10.1016/j.jconrel.2007.12.017.
  • Mano, J. F. Stimuli-Responsive Polymeric Systems for Biomedical Applications. Adv. Eng. Mater. 2008, 10(6), 515–527. DOI: 10.1002/adem.200700355.
  • Klaikherd, A.; Nagamani, C.; Thayumanavan, S. Multi-Stimuli Sensitive Amphiphilic Block Copolymer Assemblies. J. Am. Chem. Soc. 2009, 131(13), 4830–4838. DOI: 10.1021/ja809475a.
  • Park, S. C.; Kim, J.-C. Monoolein Cubic Phase Incorporating Poly(Dimethylaminoethyl Methacrylate- Co -Phenyl Vinyl Sulfide) and Its Hydrogen Peroxide, Temperature, and Near Infrared-Responsive Release Properties. Int. J. Polym. Mater. Polym. Biomater. 2023, 1–16. DOI: 10.1080/00914037.2023.2189722.
  • Long, W.; Kim, J.-C. Electric Field-Responsive Ion Pair Self-Assembly. Int. J. Polym. Mater. Polym. Biomater. 2023, 72(6), 485–496. DOI: 10.1080/00914037.2022.2029439.
  • Yoon, D. Y.; Alle, M.; Kim, J.-C. Reduction and Temperature-Responsive Hydrogel Composed of Hydroxyethyl Disulfide-Bis-Glycidyl Ether-Crosslinked Poly(hydroxyethyl Acrylate- Co -Methyl Methacrylate). Int. J. Polym. Mater. Polym. Biomater. 2022, 71(8), 624–633. DOI: 10.1080/00914037.2021.1871613.
  • Park, S. H.; Kim, J.-C. Monoolein Cubic Phase Containing Poly(Hydroxyethyl Acrylate-Co-Propyl Methacrylate-Co-Methacrylic Acid) and Its Electric Field-Driven Release Property. J. Ind. Eng. Chem. 2019, 70, 226–233. DOI: 10.1016/j.jiec.2018.10.019.
  • Kim, T. H.; Lee, S.-H.; Kim, J.-C. Spray-Dried Microparticles Composed of Carboxylated Cellulose Nanofiber and Cysteamine and Their Oxidation-Responsive Release Property. Colloid. Polym. Sci. 2020, 298(2), 157–167. DOI: 10.1007/s00396-019-04591-6.
  • Cheng, R.; Meng, F.; Deng, C.; Klok, H.-A.; Zhong, Z. Dual and Multi-Stimuli Responsive Polymeric Nanoparticles for Programmed Site-Specific Drug Delivery. Biomaterials. 2013, 34(14), 3647–3657. DOI: 10.1016/j.biomaterials.2013.01.084.
  • Park, S. C.; Sharma, G.; Kim, J.-C. Temperature- and Oxidation-Dependent Doxorubicin Release from Poly(Hydroxyethyl Acrylate-Co-Phenyl Vinyl Sulfide) Cryogel. Colloid. Polym. Sci. 2023, 301(4), 331–345. DOI: 10.1007/s00396-023-05069-2.
  • Zhao, F.; Sharma, G.; Kim, J.-C. Temperature and Oxidation-Sensitive Dioleoylphosphatidylethanolamine Liposome Stabilized with Poly(Ethyleneimine)/(Phenylthio)Acetic Acid Ion Pair. J. Biomater. Sci. Polym. Ed. 2023, 34(5), 632–649. DOI: 10.1080/09205063.2022.2138693.
  • Wang, M. H.; Jeong, J. H.; Kim, J.-C. Thermo-Triggerable Self-Assembly Comprising Cinnamoyl Polymeric β Cyclodextrin and Cinnamoyl Pluronic F127. Colloids Surf. B Biointerfaces. 2016, 142, 148–158. DOI: 10.1016/j.colsurfb.2016.02.048.
  • Pope, R. L. E.; Brown, A. M. A Primer on Tissue PH and Local Anesthetic Potency. Adv. Physiol. Educ. 2020, 44(3), 305–308. DOI: 10.1152/advan.00018.2020.
  • Randhawa, M. A.; Iqbal, A.; Nasimullah, M.; Akhtar, M.; Yousaf, S. M.; Turner, P. Henderson-Hasselbalch Equation is Inadequate for the Measurement of Transmembrane Diffusion of Drugs and Buccal Drug Absorption is a Useful Alternative. Gen. Pharmacol. Vasc. Syst. 1995, 26(4), 875–879. DOI: 10.1016/0306-3623(94)00256-M.
  • Zhang, H.; Kim, J.-C. Reduction-Responsive Monoolein Cubic Phase Containing Hydrophobically Modified Poly(ethylene Imine) and Dithiodipropionic Acid. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 526–534. DOI: 10.1016/j.colsurfa.2016.07.007.
  • Mjahed, H.; Voegel, J.-C.; Chassepot, A.; Senger, B.; Schaaf, P.; Boulmedais, F.; Ball, V. Turbidity Diagrams of Polyanion/Polycation Complexes in Solution as a Potential Tool to Predict the Occurrence of Polyelectrolyte Multilayer Deposition. J. Colloid. Interface. Sci. 2010, 346(1), 163–171. DOI: 10.1016/j.jcis.2010.02.042.
  • Mjahed, H.; Voegel, J.-C.; Senger, B.; Chassepot, A.; Rameau, A.; Ball, V.; Schaaf, P.; Boulmedais, F. Hole Formation Induced by Ionic Strength Increase in Exponentially Growing Multilayer Films. Soft Matter. 2009, 5(11), 2269. DOI: 10.1039/b819066f.
  • Hollingsworth, N.; Larson, R. G. Hysteretic Swelling/Deswelling of Polyelectrolyte Brushes and Bilayer Films in Response to Changes in PH and Salt Concentration. Polymers (Basel). 2021, 13(5), 812. DOI: 10.3390/polym13050812.
  • Rabelo, R. S.; Tavares, G. M.; Prata, A. S.; Hubinger, M. D. Complexation of Chitosan with Gum Arabic, Sodium Alginate and κ-Carrageenan: Effects of PH, Polymer Ratio and Salt Concentration. Carbohydr. Polym. 2019, 223, 115120. DOI: 10.1016/j.carbpol.2019.115120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.