2,315
Views
0
CrossRef citations to date
0
Altmetric
Research Article

PTD-FGF2 Attenuates Elastase Induced Emphysema in Mice and Alveolar Epithelial Cell Injury

, , , , , , , , & show all
Pages 109-118 | Received 06 Jul 2022, Accepted 29 Nov 2022, Published online: 07 Mar 2023

References

  • Thery C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Unit 3:22.
  • Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–192. DOI:10.1038/nri2254
  • Lee H, Lee J, Hong SH, et al. Inhibition of RAGE attenuates cigarette Smoke-Induced lung epithelial cell damage via RAGE-Mediated Nrf2/DAMP signaling. Front Pharmacol. 2018;9:684.
  • Lee H, Park JR, Kim WJ, et al. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling. Faseb J. 2017;31(5):2076–2089. DOI:10.1096/fj.201601155R
  • Fujita Y, Araya J, Ito S, et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. J Extracell Vesicles. 2015;4:28388. DOI:10.3402/jev.v4.28388
  • Pandey KC, De S, Mishra PK. Role of proteases in chronic obstructive pulmonary disease. Front Pharmacol. 2017;8:512. DOI:10.3389/fphar.2017.00512
  • Sun Z, Yang P. Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression. Lancet Oncol. 2004;5(3):182–190. DOI:10.1016/S1470-2045(04)01414-7
  • Voynow JA, Shinbashi M. Neutrophil Elastase and chronic lung disease. Biomolecules. 2021;11(8):1065
  • Abboud RT, Vimalanathan S. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis. 2008;12(4):361–367.
  • Barnes PJ. The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2009;41(6):631–638. DOI:10.1165/rcmb.2009-0220TR
  • Davis JD, Wypych TP. Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol. 2021;14(5):978–990. DOI:10.1038/s41385-020-00370-7
  • Isakson BE, Seedorf GJ, Lubman RL, et al. Cell-cell communication in heterocellular cultures of alveolar epithelial cells. Am J Respir Cell Mol Biol. 2003;29(5):552–561. DOI:10.1165/rcmb.2002-0281OC
  • Liberti DC, Kremp MM, Liberti WA, 3rd, et al. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury. Cell Rep. 2021;35(6):109092. DOI:10.1016/j.celrep.2021.109092
  • EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–357. DOI:10.1038/nrd3978
  • Admyre C, Grunewald J, Thyberg J, et al. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J. 2003;22(4):578–583. DOI:10.1183/09031936.03.00041703
  • An JJ, Eum WS, Kwon HS, et al. Protective effects of skin permeable epidermal and fibroblast growth factor against ultraviolet-induced skin damage and human skin wrinkles. J Cosmet Dermatol. 2013;12(4):287–295. DOI:10.1111/jocd.12067
  • Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med. 2006;174(8):886–893. DOI:10.1164/rccm.200509-1374OC
  • Aoshiba K, Nagai A. Oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke. Tob Induc Dis. 2003;1(3):219–226. DOI:10.1186/1617-9625-1-3-219
  • Kode A, Rajendrasozhan S, Caito S, et al. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2008;294(3):L478–88. DOI:10.1152/ajplung.00361.2007
  • Guzy RD, Stoilov I, Elton TJ, et al. Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary ­fibrosis, in response to bleomycin. Am J Respir Cell Mol Biol. 2015;52(1):116–128. DOI:10.1165/rcmb.2014-0184OC
  • Lee BJ, Moon HG, Shin TS, et al. Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon-gamma. Exp Mol Med. 2011;43(4):169–178. DOI:10.3858/emm.2011.43.4.018
  • Morino S, Toba T, Tao H, et al. Fibroblast growth factor-2 promotes recovery of pulmonary function in a canine models of elastase-induced emphysema. Exp Lung Res. 2007;33(1):15–26. DOI:10.1080/01902140601113070
  • Barnes PJ, Burney PG, Silverman EK, et al. Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 2015;1:15076. DOI:10.1038/nrdp.2015.76
  • Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11(7):537–561. DOI:10.2174/138920210793175895
  • Crowley G, Kwon S, Caraher EJ, et al. Quantitative lung morphology: semi-automated measurement of mean linear intercept. BMC Pulm Med. 2019;19(1):206.
  • Coughlan C, Bruce KD, Burgy O, et al. Exosome Isolation by ultracentrifugation and precipitation and techniques for downstream analyses. Curr Protoc Cell Biol. 2020;88(1):e110.
  • Soo CY, Song Y, Zheng Y, et al. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology. 2012;136(2):192–197.
  • Tuder RM, Petrache I. Pathogenesis of chronic obstructive pulmonary disease. J Clin Invest. 2012;122(8):2749–2755. DOI:10.1172/JCI60324
  • Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10(1):3145.
  • Demedts IK, Demoor T, Bracke KR, et al. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res. 2006;7(1):53.
  • Sauler M, Bazan IS, Lee PJ. Cell Death in the lung: the apoptosis-necroptosis axis. Annu Rev Physiol. 2019;81:375–402.
  • O’Brien K, Breyne K, Ughetto S, et al. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 2020;21(10):585–606.
  • Gomez N, James V, Onion D, et al. Extracellular vesicles and chronic obstructive pulmonary disease (COPD): a systematic review. Respir Res. 2022;23(1):82.
  • Rajabi H, Konyalilar N, Erkan S, et al. Emerging role of exosomes in the pathology of chronic obstructive pulmonary diseases; destructive and therapeutic properties. Stem Cell Res Ther. 2022;13(1):144.
  • Zhou F, Onizawa S, Nagai A, et al. Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury. Respir Res. 2011;12(1):78.
  • Parikh P, Wicher S, Khandalavala K, et al. Cellular senescence in the lung across the age spectrum. Am J Physiol Lung Cell Mol Physiol. 2019;316(5):L826–L842.
  • Rivas M, Gupta G, Costanzo L, et al. Senescence: pathogenic driver in chronic obstructive pulmonary disease. Medicina (Kaunas). 2022;58(6):817.
  • Mercer BA, D’Armiento JM. Emerging role of MAP kinase pathways as therapeutic targets in COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(2):137–150. DOI:10.2147/copd.2006.1.2.137
  • Singh RK, Najmi AK. Novel Therapeutic potential of Mitogen-Activated protein kinase activated protein kinase 2 (MK2) in chronic airway inflammatory disorders. Curr Drug Targets. 2019;20(4):367–379.
  • Defnet AE, Hasday JD, Shapiro P. Kinase inhibitors in the treatment of obstructive pulmonary diseases. Curr Opin Pharmacol. 2020;51:11–18. DOI:10.1016/j.coph.2020.03.005
  • Sato T, Liu X, Nelson A, et al. Reduced miR-146a increases prostaglandin E(2)in chronic obstructive pulmonary disease ­fibroblasts [research support, N.I.H., extramural research support, Non-U.S. Gov’t]. Am J Respir Crit Care Med. 2010;182(8):1020–1029.
  • Zhang XQ, Zhang P, Yang Y, et al. Regulation of pulmonary surfactant synthesis in fetal rat type II alveolar epithelial cells by microRNA-26a. Pediatr Pulmonol. 2014;49(9):863–872.
  • Oliveto S, Mancino M, Manfrini N, et al. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8(1):45–56.
  • Zhuang Y, Hobbs BD, Hersh CP, et al. Identifying miRNA-mRNA networks associated with COPD phenotypes. Front Genet. 2021;12:748356.
  • Salimian J, Mirzaei H, Moridikia A, et al. Chronic obstructive pulmonary disease: microRNAs and exosomes as new diagnostic and therapeutic biomarkers. J Res Med Sci. 2018;23:27.
  • Shi XF, He X, Sun ZR, et al. Different expression of circulating microRNA profile and plasma SP-D in tibetan COPD patients. Sci Rep. 2022;12(1):3388.
  • Moon HG, Kim SH, Gao J, et al. CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke [research support, N.I.H., extramural research support, Non-U.S. Am J Physiol Lung Cell Mol Physiol. 2014;307(4):L326–37. DOI:10.1152/ajplung.00102.2014
  • Schembri F, Sridhar S, Perdomo C, et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium [research support, N.I.H., extramural research support, Non-U.S. Gov’t]. Proc Natl Acad Sci USA. 2009;106(7):2319–2324. DOI:10.1073/pnas.0806383106
  • Izzotti A, Larghero P, Longobardi M, et al. Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung [research support, N.I.H., extramural]. Mutat Res. 2011;717(1-2):9–16. DOI:10.1016/j.mrfmmm.2010.12.008
  • Osei ET, Florez-Sampedro L, Timens W, et al. Unravelling the complexity of COPD by microRNAs: it’s a small world after all [review]. Eur Respir J. 2015;46(3):807–818.
  • Van Pottelberge GR, Mestdagh P, Bracke KR, et al. MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease [comparative study ­research support, Non-U.S. Gov’t]. Am J Respir Crit Care Med. 2011;183(7):898–906. DOI:10.1164/rccm.201002-0304OC
  • Perry MM, Moschos SA, Williams AE, et al. Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells [research support, Non-U.S. Gov’t]. J Immunol. 2008;180(8):5689–5698. DOI:10.4049/jimmunol.180.8.5689
  • Bhattacharyya S, Balakathiresan NS, Dalgard C, et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem. 2011;286(13):11604–11615.
  • Sonneville F, Ruffin M, Coraux C, et al. MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic ­fibrosis lung pathology. Nat Commun. 2017;8(1):710.