1,191
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Integrative Analyses of Mendelian Randomization and Transcriptomic Data Reveal No Association between Leptin and Chronic Obstructive Pulmonary Disease

&
Pages 321-326 | Received 20 Jun 2023, Accepted 13 Sep 2023, Published online: 09 Oct 2023

References

  • Labaki WW, Rosenberg SR. Chronic obstructive pulmonary disease. Ann Intern Med. 2020;173(3):JITC17–JITC32. doi: 10.7326/IsTranslatedFrom_AITC202008040_Japanese.
  • Assad NA, Sood A. Leptin, adiponectin and pulmonary diseases. Biochimie. 2012;94(10):2180–2189. doi: 10.1016/j.biochi.2012.03.006.
  • Perrotta F, Scialò F, Mallardo M, et al. Adiponectin, leptin, and resistin are dysregulated in patients infected by SARS-CoV-2. Int J Mol Sci. 2023;24(2):24.
  • Nigro E, Mosella M, Daniele A, et al. Adiponectin increase in patients affected by chronic obstructive pulmonary disease with overlap of bronchiectasis. Life. 2023;13(2):444. doi: 10.3390/life13020444.
  • Liang R, Zhang W, Song Y-M. Levels of leptin and IL-6 in lungs and blood are associated with the severity of chronic obstructive pulmonary disease in patients and rat models. Mol Med Rep. 2013;7(5):1470–1476. doi: 10.3892/mmr.2013.1377.
  • Arora S, Madan K, Mohan A, et al. Serum inflammatory markers and nutritional status in patients with stable chronic obstructive pulmonary disease. Lung India. 2019;36(5):393–398. doi: 10.4103/lungindia.lungindia_494_18.
  • Bruzzaniti S, Bocchino M, Santopaolo M, et al. An immunometabolic pathomechanism for chronic obstructive pulmonary disease. Proc Natl Acad Sci USA. 2019;116(31):15625–15634. doi: 10.1073/pnas.1906303116.
  • Sueblinvong V, Liangpunsakul S. Relationship between serum leptin and chronic obstructive pulmonary disease in US adults: results from the third national health and nutrition examination survey. J Investig Med. 2014;62(7):934–937. doi: 10.1097/JIM.0000000000000104.
  • Vernooy JHJ, Ubags NDJ, Brusselle GG, et al. Leptin as regulator of pulmonary immune responses: involvement in respiratory diseases. Pulm Pharmacol Ther. 2013;26(4):464–472. doi: 10.1016/j.pupt.2013.03.016.
  • Bowden J, Holmes MV. Meta-analysis and mendelian randomization: a review. Res Synth Methods. 2019;10(4):486–496. doi: 10.1002/jrsm.1346.
  • Hemani G, Zheng J, Elsworth B, et al. The MR-base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408. doi: 10.7554/eLife.34408.
  • Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42:1001–1006.
  • Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–314. doi: 10.1002/gepi.21965.
  • Bowden J, Smith GD, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression. Int J Epidemiol. 2015;44(2):512–525. doi: 10.1093/ije/dyv080.
  • Hartwig FP, Smith GD, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–1998. doi: 10.1093/ije/dyx102.
  • Morrow JD, Zhou X, Lao T, et al. Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Sci Rep. 2017;7:44232. doi: 10.1038/srep44232.
  • Diaz-Papkovich A, Anderson-Trocmé L, Gravel S. A review of UMAP in population genetics. J Hum Genet. 2021;66(1):85–91. doi: 10.1038/s10038-020-00851-4.
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–29. doi: 10.1038/75556.
  • Ogata H, Goto S, Sato K, et al. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27(1):29–34. doi: 10.1093/nar/27.1.29.
  • Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(Database issue):D808–D815. doi: 10.1093/nar/gks1094.
  • Safran M, Dalah I, Alexander J, et al. GeneCards version 3: the human gene integrator. Database (Oxford). 2010;2010(0):baq020–baq020. doi: 10.1093/database/baq020.
  • Sherry ST, Ward MH, Kholodov M, et al. DbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–311. doi: 10.1093/nar/29.1.308.
  • Kilpeläinen TO, Carli JFM, Skowronski AA, et al. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. Nat Commun. 2016;7(1):10494. doi: 10.1038/ncomms10494.
  • Wielscher M, Amaral AFS, van der Plaat D, et al. Genetic correlation and causal relationships between cardio-metabolic traits and lung function impairment. Genome Med. 2021;13(1):104. doi: 10.1186/s13073-021-00914-x.
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559. doi: 10.1186/1471-2105-9-559.
  • Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin. 2018;39(7):1176–1188. doi: 10.1038/aps.2018.40.
  • Perrotta F, Nigro E, Pafundi PC, et al. Adiponectin is associated with neutrophils to lymphocyte ratio in patients with chronic obstructive pulmonary disease. COPD J. 2021;18(1):70–75. doi: 10.1080/15412555.2020.1857718.
  • Zhou L, Yuan C, Zhang J, et al. Circulating leptin concentrations in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respiration. 2013;86(6):512–522. doi: 10.1159/000354191.