410
Views
2
CrossRef citations to date
0
Altmetric
Review

Haloacetic Acids in the Aquatic Environment

, ORCID Icon, , , , & ORCID Icon show all
Pages 1-25 | Received 12 Jan 2022, Accepted 18 Oct 2022, Published online: 05 Nov 2022

References

  • Zhang, A.; Chu, W.; Bond, T.; Wang, F.; Pan, Y.; Tong, J.; Zhu, H. Interference from Haloacetamides during the Determination of Haloacetic Acids Using Gas Chromatography. Journal of Chromatography A. 2020, 1612, 460652. DOI: 10.1016/j.chroma.2019.460652.
  • Zheng, L.; Sun, H.; Wu, C.; Wang, Y.; Zhang, Y.; Ma, G.; Lin, H.; Chen, J.; Hong, H. Precursors for Brominated Haloacetic Acids during Chlorination and a New Useful Indicator for Bromine Substitution Factor. Sci. Total. Environ. 2020, 698, 134250. DOI: 10.1016/j.scitotenv.2019.134250.
  • Richardson, S. D.; Plewa, M. J.; Wagner, E. D.; Schoeny, R.; DeMarini, D. M. Occurrence, Genotoxicity, and Carcinogenicity of Regulated and Emerging Disinfection by-products in Drinking Water: A Review and Roadmap for Research. Mutat. Res-Rev. Mutat. 2007, 636(1–3), 178–242. DOI: 10.1016/j.mrrev.2007.09.001.
  • Rodriguez, M. J.; Serodes, J.; Roy, D. Formation and Fate of Haloacetic Acids (Haas) within the Water Treatment Plant. Water. Res. 2007, 41(18), 4222–4232. DOI: 10.1016/j.watres.2007.05.048.
  • Zhou, H.; Zhang, X.-J.; Wang, Z-S. Occurrence of Haloacetic Acids in Drinking Water in Certain Cities of China. biomedical and Environmental Sciences BES. 2004, 17(3), 299. DOI: 10.1179/000349804225021325.
  • Pals, J. A.; Ang, J. K.; Wagner, E. D.; Plewa, M. J. Biological Mechanism for the Toxicity of Haloacetic Acid Drinking Water Disinfection Byproducts. environmental Science & Technology. 2011, 45(13), 5791–5797. DOI: 10.1021/es2008159.
  • Plewa, M. J.; Simmons, J. E.; Richardson, S. D.; Wagner, E. Mammalian Cell Cytotoxicity and Genotoxicity of the Haloacetic Acids, a Major Class of Drinking Water Disinfection by-products. environmental and Molecular Mutagenesis. 2010, 51(8–9), 871–878. DOI: 10.1002/em.20585.
  • Richardson, S. D.; Plewa, M. J.; Wagner, E. D.; Schoeny, R.; Marini, D. Occurrence, Genotoxicity, and Carcinogenicity of Regulated and Emerging Disinfection by-products in Drinking Water: A Review and Roadmap for Research. Mutation Research Reviews in Mutation Research. 2007, 636(1–3), 178–242. DOI: 10.1016/j.mrrev.2007.09.001.
  • Nieuwenhuijsen, M J. Chlorination Disinfection Byproducts in Water and Their Association with Adverse Reproductive Outcomes A Review. Occup Environ Med. 2000, 57(2), 73–85. DOI: 10.1136/oem.57.2.73.
  • Kanchanamayoon, W. Sample Preparation Methods for the Determination of Chlorination Disinfection Byproducts in Water Samples. Chromatographia. 2015, 78(17–18), 1135–1142. DOI: 10.1007/s10337-015-2934-7.
  • Urbansky, E. Techniques and Methods for the Determination of Haloacetic Acids in Potable Water. J Environ Monit JEM. 2000, 2(4), 285–291. DOI: 10.1039/B002977G.
  • Clark, R. M.; Haught, R. C. Characterizing Pipe Wall Demand: Implications for Water Quality Modeling. J. Water. Res. Plan. Man. 2005, 131(3), 208–217. DOI: 10.1061/(ASCE)0733-9496(2005)131:3(208).
  • Li, X. F.; Mitch, W. A. Drinking Water Disinfection Byproducts (Dbps) and Human Health Effects: Multidisciplinary Challenges and Opportunities. Environ. Sci. Technol. 2018, 52(4), 1681–1689. DOI: 10.1021/acs.est.7b05440.
  • Martı́nez, D.; Borrull, F.; Calull, M. Evaluation of Different Electrolyte Systems and on-line Preconcentrations for the Analysis of Haloacetic Acids by Capillary Zone Electrophoresis. J. Chromatogr. A. 1999, 835(1–2), 187–196. DOI: 10.1016/S0021-9673(98)01036-X.
  • Hong, H.; Xiong, Y.; Ruan, M.; Liao, F.; Lin, H.; Liang, Y. Factors Affecting THMs, HAAs and HNMs Formation of Jin Lan Reservoir Water Exposed to Chlorine and Monochloramine. Science of the Total environment. 2013, 444, 196–204. DOI: 10.1016/j.scitotenv.2019.134250.
  • Postigo, C.; Emiliano, P.; Barceló, D.; Valero, F. Chemical Characterization and Relative Toxicity Assessment of Disinfection Byproduct Mixtures in a Large Drinking Water Supply Network. journal of Hazardous Materials. 2018, 359, 166–173. DOI: 10.1016/j.mrrev.2007.09.001.
  • Rodriguez, M. J.; Sérodes, J.-B.; Levallois, P. Behavior of Trihalomethanes and Haloacetic Acids in a Drinking Water Distribution System. Water research. 2004, 38(20), 4367–4382. DOI: 10.1016/j.watres.2004.08.018.
  • Yao, S. An Investigation of Haloacetic Acid Occurrence in Indoor and Outdoor Swimming Pools in Beijing China. IOP Conference Series: Earth and Environmental Science. 2020, 467(1), 012136. DOI: 10.1088/1755-1315/467/1/012136.
  • Liu, X.; Chen, L.; Yang, M.; Tan, C.; Chu, W. The Occurrence, Characteristics, Transformation and Control of Aromatic Disinfection by-products: A Review. Water research. 2020, 184, 116076. DOI: 10.1016/j.mrrev.2007.09.001.
  • Kanan, A.; Karanfil, T. Formation of Disinfection by-products in Indoor Swimming Pool Water: The Contribution from Filling Water Natural Organic Matter and Swimmer Body Fluids. Water research. 2011, 45(2), 926–932. DOI: 10.1016/j.watres.2010.09.031.
  • Keuten, M. G. A.; Schets, F. M.; Schijven, J. F.; Verberk, J. Q. J. C.; van Dijk, J. C. Definition and Quantification of Initial Anthropogenic Pollutant Release in Swimming Pools. Water research. 2012, 46(11), 3682–3692. DOI: 10.1136/oem.57.2.73.
  • Delpla, I.; Simard, S.; Proulx, F.; Sérodes, J.-B.; Valois, I.; Ahmadpour, E.; Debia, M.; Tardif, R.; Haddad, S.; Rodriguez, M. Cumulative Impact of Swimmers on Pool Water Quality: A full-scale Study Revealing Seasonal and Daily Variabilities of Disinfection by-products. journal of Environmental Chemical Engineering. 2021, 9(6), 106809. DOI: 10.1136/oem.57.2.73.
  • Cheng, S.; Wu, Y.; Young, T. R.; Dodd, M. C.; Wu, J.; Zhang, H.; Huo, Z.; Qian, Y.; Li, Y.; Li, W., et al. Rapid Determination of Trace Haloacetic Acids in Water and Wastewater Using non-suppressed Ion Chromatography with Electrospray ionization-tandem Mass Spectrometry. Science of the Total environment. 2021, 754, 142297. DOI: 10.1016/j.scitotenv.2020.142297.
  • Zwiener, C.; Richardson, S. D.; De Marini, D. M.; Grummt, T.; Glauner, T.; Frimmel, F. H. Drowning in Disinfection Byproducts? Assessing Swimming Pool Water. environmental Science & Technology. 2007, 41(2), 363–372. DOI: 10.1021/acs.est.7b05440.
  • Hartwig, A. Monochloroacetic Acid, Sodium Monochloroacetate. MAK. Collect. Occup. Health. Saf. 2020, 5, 1–18. DOI: 10.34865/mb7911e5_4ad.
  • Xu, X.; Mariano, T. M.; Laskin, J. D.; Weisel, C. P. Percutaneous Absorption of Trihalomethanes, Haloacetic Acids, and Haloketones. toxicology and Applied Pharmacology. 2002, 184(1), 19–26. DOI: 10.1006/taap.2002.9494.
  • DeAngelo, A. B.; McMillan, L. P. Carcinogenicity of Chlorinated Acetic Acids [ J]. Water Chlorination: Chemistry, Environmental Impact and Health Effects, 1990, 6, 193–199.
  • Porter, C. K.; Putnam, S. D.; Hunting, K. L.; Riddle, M. R. The Effect of Trihalomethane and Haloacetic Acid Exposure on Fetal Growth in a Maryland County. Am. J. Epidemiol. 2005, 162, 334–344. DOI: 10.1093/aje/kwi211.
  • Zhang, L.; Xu, L.; Zeng, Q.; Zhang, S. H.; Xie, H.; Liu, A. L.; Lu, W. Q. Comparison of DNA Damage in human-derived Hepatoma Line (HepG2) Exposed to the Fifteen Drinking Water Disinfection Byproducts Using the Single Cell Gel Electrophoresis Assay. Mutat. Res. 2012, 741, 89–94. DOI: 10.1016/j.mrgentox.2011.11.004.
  • Marsà, A.; Cortés, C.; Hernández, A.; Marcos, R. Hazard Assessment of Three Haloacetic Acids, as Byproducts of Water Disinfection, in Human Urothelial Cells. Toxicol. Appl. Pharmacol. 2018, 347, 70–78. DOI: 10.1016/j.taap.2018.04.004.
  • Fu, K. Z.; Li, J.; Vemula, S.; Moe, B.; Li, X. F. Effects of Halobenzoquinone and Haloacetic Acid Water Disinfection Byproducts on Human Neural Stem Cells. J. Environ. Sci. 2017, 58, 239–249. DOI: 10.1016/j.jes.2017.02.006.
  • Tremintin, S. EPA Method 557: Determination of Haloacetic Acids, Bromate, and Dalapon in Drinking Water by IC-MS/MS, EPA.2009, 1–43.
  • A Global Overview of National Regulations and Standards for drinking-water Quality. World Health Organization, Geneva. 2018. 1–100
  • Stephan, I. Guidance on the European Biocidal Products Regulation Concerning Efficacy of Wood Preservatives. Proceedings of the 48th IRG Annual Meeting. 2017, 1–16.
  • Jin, Y. GB5749-2006 Standards for Drinking Water Quality. National Standard of the People's Republic of China. 2007, 1–11.
  • Lau, B. P. Y.; Becalski, A. Determination of Iodoacetic Acid Using Liquid chromatography/electrospray Tandem Mass Spectrometry. Rapid. Commun. Mass Spectrom. 2008, 22, 1787–1791. DOI: 10.1002/rcm.3547.
  • Liu, D.; Cheng, S.; Ji, W.; Shen, H.; Yuan, J.; Wang, J.; Zhang, W.; Liu, H.; Zhou, Y. Determination and Generating Study on Monoiodoacetic Acid and Diiodoacetic Acid in Water by Liquid chromatography-inductively Coupled Plasma Mass Spectrometry. Microchem. J. 2020, 159, 105401. DOI: 10.1016/j.microc.2020.105401.
  • Ghazala, Y.; Unaiza, K.; Zubi, S.; Haseeb, A. A Rapid and Sensitive Method for Determination of Chlorinated By-products in Tap Water Samples. J. Chil. Chem. Soc. 2017, 62, 3438–3441. DOI: 10.4067/S0717-97072017000200004.
  • Hu, S.; Gong, T.; Ma, J.; Tao, Y.; Xian, Q. Simultaneous Determination of Iodinated Haloacetic Acids and Aromatic Iodinated Disinfection Byproducts in Waters with a New SPE-HPLC-MS/MS Method. Chemosphere. 2018, 198, 147–153. DOI: 10.1016/j.chemosphere.2018.01.124.
  • Waseem, S.; Abdullah, M. P. Comparative Study of Sample Preparation Techniques Coupled to GC for the Analysis of Halogenated Acetic Acids (Haas) Acids in Tap Water. J. Chromatogr. Sci. 2010, 48, 188–193. DOI: 10.1093/chromsci/48.3.188.
  • Al-shatri, M. A.; Nuhu, A. A.; Basheer, C. Determination of Haloacetic Acids in Bottled and Tap Water Sources by Dispersive Liquid-Liquid Microextraction and GC-MS Analysis. Sci. World. J. 2014, 695049. 2014, doi: 10.1155/2014/695049
  • Hammami, B.; Driss, M. R. Development of Dry Derivatization and Headspace solid-phase Microextraction Technique for the GC-ECD Determination of Haloacetic Acids in Tap Water. J. Anal. Chem. 2013, 68, 671–679. DOI: 10.1134/S1061934813080054.
  • Liu, Y.; Mou, S.; Chen, D. Determination of trace-level Haloacetic Acids in Drinking Water by Ion chromatography–inductively Coupled Plasma Mass Spectrometry. J Chromatogr. A. 2004, 1039, 89–95. DOI: 10.1016/j.chroma.2003.12.069.
  • Huang, B.; Rohrer, J. Targeted Quantitation Mode Comparison of Haloacetic Acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography Coupled to High-Resolution (Orbitrap) Mass Spectrometry. J. Chromatogr. A. 2020, 1630, 461538. DOI: 10.1016/j.chroma.2020.461538.
  • Domino, M. M.; Pepich, B. V.; Munch, D. J.; Fair, P. S. Optimizing the Determination of Haloacetic Acids in Drinking Waters. J. Chromatogr. A. 2004, 1035, 9–16. DOI: 10.1016/j.chroma.2004.02.034.
  • Duan, J.; Li, W.; Si, J.; Mulcahy, D. Rapid Determination of Nine Haloacetic Acids in Water Using ultra-performance Liquid chromatography-tandem Mass Spectrometry in Multiple Reactions Monitoring Mode. Anal. Methods. 2011, 3, 1667–1673. DOI: 10.1039/C1AY05122A.
  • Liu, Y.; Mou, S. Determination of Trace Levels of Haloacetic Acids and Perchlorate in Drinking Water by Ion Chromatography with Direct Injection. J. Chromatogr. A. 2003, 997, 225–235. DOI: 10.1016/S0021-9673(03)00628-9.
  • Chiavelli, L.; Figueiredo, L.; Almeida, R.; Claus, T.; Costa, W. Validation and Application of a GC-MS Method for the Determination of Haloacetic Acids in Drinking Water. J. Serb. Chem. Soc. 2016, 81, 73. DOI: 10.2298/JSC160412073C.
  • Li, Y.; Whitaker, J. S.; McCarty, C. L. Analysis of Iodinated Haloacetic Acids in Drinking Water by reversed-phase Liquid chromatography/electrospray ionization/tandem Mass Spectrometry with Large Volume Direct Aqueous Injection. J. Chromatogr. A. 2012, 1245, 75–82. DOI: 10.1016/j.chroma.2012.05.005.
  • Meng, L.; Wu, S.; Ma, F.; Jia, A.; Hu, J. Trace Determination of Nine Haloacetic Acids in Drinking Water by Liquid chromatography-electrospray Tandem Mass Spectrometry. J. Chromatogr. A. 2010, 1217, 4873–4876. DOI: 10.1016/j.chroma.2010.04.074.
  • Sadia, W.; Pauzi, A. SPE-GC-MS for the Determination of Halogenated Acetic Acids in Drinking Water. Chromatographia. 2009, 69, 1447–1451. DOI: 10.1365/s10337-009-1065-4.
  • Barron, L.; Paull, B. Determination of Haloacetic Acids in Drinking Water Using Suppressed micro-bore Ion Chromatography with Solid Phase Extraction. Anal. Chim. Acta. 2004, 522, 153–161. DOI: 10.1016/j.aca.2004.06.052.
  • Zhong, Z.; Li, G.; Shao, Y.; Zhu, B.; Liu, Z.; Deng, J.; Mo, J. Amino-functionalized Graphene oxide/neutral Alumina Nanocomposite Based solid-phase Extraction Coupled with Ion chromatography-mass Spectrometry for the Determination of Trace Haloacetic Acids in Drinking Water. Anal. Methods. 2017, 9, 2425–2432. DOI: 10.1039/C7AY00583K.
  • Liu, X.; Wei, X.; Zheng, W.; Jiang, S.; Templeton, M. R.; He, G.; Qu, W. An Optimized Analytical Method for the Simultaneous Detection of Iodoform, Iodoacetic Acid, and Other Trihalomethanes and Haloacetic Acids in Drinking Water. PLoS One. 2013, 8, e60858. DOI: 10.1371/journal.pone.0060858.
  • Nikolaou, A. D.; Golfinopoulos, S. K.; Kostopoulou, M. N.; Lekkas, T. D. Determination of Haloacetic Acids in Water by Acidic Methanol esterification–GC–ECD Method. Water. Res. 2002, 36, 1089–1094. DOI: 10.1016/S0043-1354(01)00300-1.
  • Cardador, M. J.; Serrano, A.; Gallego, M. Simultaneous liquid-liquid microextraction/methylation for the Determination of Haloacetic Acids in Drinking Waters by Headspace Gas Chromatography. J. Chromatogr. A. 2008, 1209, 61–69. DOI: 10.1016/j.chroma.2008.09.033.
  • Varanusupakul, P.; Vora-Adisak, N.; Pulpoka, B. In Situ Derivatization and Hollow Fiber Membrane Microextraction for Gas Chromatographic Determination of Haloacetic Acids in Water. Anal. Chim. Acta. 2007, 598, 82–86. DOI: 10.1016/j.aca.2007.07.025.
  • Liu, Y.; Mou, S. Determination of Bromate and Chlorinated Haloacetic Acids in Bottled Drinking Water with Chromatographic Methods. Chemosphere. 2004, 55, 1253–1258. DOI: 10.1016/j.chemosphere.2003.12.023.
  • Alsharaa, A.; Sajid, M.; Basheer, C.; Alhooshani, K.; Lee, H. K. Determination of Haloacetic Acids in Water Using Layered Double Hydroxides as a Sorbent in Dispersive solid-phase Extraction Followed by Liquid Chromatography with Tandem Mass Spectrometry. J. Sep. Sci. 2016, 39, 3610–3615. DOI: 10.1002/jssc.201600305.
  • Franco, E. S.; Pádua, V. L.; Rodriguez, M. D. V. R.; Silva, D. F.; Libânio, M.; Pereira, M. C.; Silva, P. H. G.; Santanta Júnior, I. C.; Rocha, B. A.; Camargo, J. A., et al. A Simple liquid-liquid extraction-gas chromatography-mass Spectrometry Method for the Determination of Haloacetic Acids in Environmental Samples: Application in Water with Microcystis Aeruginosa Cells. Microchem. J. 2019, 150, 104088. DOI: 10.1016/j.microc.2019.104088.
  • Planas, C.; Palacios, Ó.; Ventura, F.; Boleda, M. R.; Martín, J.; Caixach, J. Simultaneous Analysis of 11 Haloacetic Acids by Direct injection-liquid chromatography-electrospray ionization-triple Quadrupole Tandem Mass Spectrometry and High Resolution Mass Spectrometry: Occurrence and Evolution in chlorine-treated Water. Anal. Bioanal. Chem. 2019, 411, 3905–3917. DOI: 10.1007/s00216-019-01864-5.
  • Casas Ferreira, A. M.; Fernández Laespada, M. E.; Pérez Pavón, J. L.; Moreno Cordero, B. In Situ Derivatization Coupled to Microextraction by Packed Sorbent and Gas Chromatography for the Automated Determination of Haloacetic Acids in Chlorinated Water. J. Chromatogr. A. 2013, 1318, 35–42. DOI: 10.1016/j.chroma.2013.10.009.
  • Wu, S.; Anumol, T.; Gandhi, J.; Snyder, S. A. Analysis of Haloacetic Acids, Bromate, and Dalapon in Natural Waters by Ion chromatography-tandem Mass Spectrometry. J. Chromatogr. A. 2017, 1487, 100–107. DOI: 10.1016/j.chroma.2017.01.006.
  • Cardador, M. J.; Gallego, M. Optimisation and Comparison of Several microextraction/methylation Methods for Determining Haloacetic Acids in Water Using Gas Chromatography. Anal. Bioanal. Chem. 2010, 396, 1331–1343. DOI: 10.1007/s00216-009-3281-z.
  • Sarrión, M.; Santos, F. J.; Galceran, M. T. In Situ derivatization/solid-phase Microextraction for the Determination of Haloacetic Acids in Water. Anal. Chem. 2000, 72, 4865. DOI: 10.1021/ac000479d.
  • Xue, R.; Donovan, A.; Shi, H.; Yang, J.; Hua, B.; Inniss, E.; Eichholz, T. Rapid Simultaneous Analysis of 17 Haloacetic Acids and Related Halogenated Water Contaminants by high-performance Ion chromatography-tandem Mass Spectrometry. Anal. Bioanal. Chem. 2016, 408, 6613–6622. DOI: 10.1007/s00216-016-9773-8.
  • Cardador, M. J.; Gallego, M. Eco-friendly Microextraction Method for the Quantitative Speciation of 13 Haloacetic Acids in Water. J. Chromatogr. A. 2014, 1340, 15–23. DOI: 10.1016/j.chroma.2014.03.019.
  • Prieto-Blanco, M. C.; Alpendurada, M. F.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D.; Machado, S.; Gonçalves, C. Improving Methodological Aspects of the Analysis of Five Regulated Haloacetic Acids in Water Samples by solid-phase Extraction, ion-pair Liquid Chromatography and Electrospray Tandem Mass Spectrometry. Talanta. 2012, 94, 90–98. DOI: 10.1016/j.talanta.2012.02.061.
  • Nsubuga, H.; Basheer, C. Determination of Haloacetic Acids in Swimming Pool Waters by membrane-protected micro-solid Phase Extraction. J.Chromatogr. A. 2013, 1315, 47–52. DOI: 10.1016/j.chroma.2013.09.050.
  • Saraji, M.; Bidgoli, A. A. H. Single-drop Microextraction with in-microvial Derivatization for the Determination of Haloacetic Acids in Water Sample by Gas chromatography–mass Spectrometry. J. Chromatogr. A. 2009, 1216, 1059–1066. DOI: 10.1016/j.chroma.2008.12.064.
  • Saraji, M.; Jamshidi, F.; Mossaddegh, M.; Farajmand, B. Dispersive liquid-liquid Microextraction of Chloroacetic Acids from Water Samples Using a syringe-like Glass Extraction Vessel. Microchem. J. 2019, 146, 914–921. DOI: 10.1016/j.microc.2019.02.030.
  • Wang, F.; Dicinoski, G. W.; Zhu, Y.; Haddad, P. R. Simultaneous Determination of Monofluoroacetate, Difluoroacetate and Trifluoroacetate in Environmental Samples by Ion Chromatography. J. Chromatogr. A. 2004, 1032, 31–35. DOI: 10.1016/j.chroma.2003.10.133.
  • Li, W.; Liu, Y.; Duan, J.; Mulcahy, D. Determination of ten Haloacetic Acids in Water Using Gas chromatography-triple Quadrupole Mass Spectrometry. Anal. Methods. 2013, 5, 2258–2266. DOI: 10.1039/C3AY26402E.
  • Sun, Y.; Gu, P. Determination of Haloacetic Acids in Hospital Effluent after Chlorination by Ion Chromatography. J. Environ. Sci. 2007, 19, 885–891. DOI: 10.1016/S1001-0742(07)60147-8.
  • Cardador, M. J.; Gallego, M. Haloacetic Acids Content of Fruit Juices and Soft Drinks. Food. Chem. 2015, 173, 685–693. DOI: 10.1016/j.foodchem.2014.10.105.
  • Ghassempour, A.; Chalavi, S.; Abdollahpour, A.; Mirkhani, S. A. Determination of Mono- and Dichloroacetic Acids in Betaine Media by Liquid Chromatography. Talanta. 2006, 68, 1396–1400. DOI: 10.1016/j.talanta.2005.07.044.
  • Soleimani, M.; Khani, A.; Moazzen, E.; Ebrahimzadeh, H.; Samiei, A.; Masoomi, L. A Sensitive Method for Determination Glycolic Acid, Mono- and Di-Chloroacetic Acids in Betaine Media Using Amino-Functionalized SBA-15 as A Sorbent and HPLC Assay. Chromatographia. 2013, 76, 33–40. DOI: 10.1007/s10337-012-2366-6.
  • Xie, Z.; Shi, W.; Liu, L.; Deng, Q. Quantitative Analysis of Monofluoroacetate in Biological Samples by high-performance Liquid Chromatography Using Fluorescence Labeling with 9-chloromethylanthracene. J. Chromatogr. B. 2007, 857, 53–58. DOI: 10.1016/j.jchromb.2007.06.028.
  • Cardador, M. J.; Gallego, M. Static headspace–gas chromatography–mass Spectrometry for the Simultaneous Determination of Trihalomethanes and Haloacetic Acids in Canned Vegetables. J. Chromatogr. A. 2016, 1454, 9–14. DOI: 10.1016/j.chroma.2016.05.080.
  • Noonan, G. O.; Begley, T. H.; Diachenko, G. W. Rapid Quantitative and Qualitative Confirmatory Method for the Determination of Monofluoroacetic Acid in Foods by Liquid chromatography-mass Spectrometry. J. Chromatogr. A. 2007, 1139, 271–278. DOI: 10.1016/j.chroma.2006.11.034.
  • Hu, G.; Xu, X.; Zhang, H.; Yuan, Y. Fast Determination of Sodium Monofluoroacetate in Liquid Milk and Dairy Powder by Hydrophilic Interaction Liquid Chromatography-Triple Quadrupole Mass Spectrometry. Food. Anal. Methods. 2016, 9, 2741–2748. DOI: 10.1007/s12161-016-0423-8.
  • Wong, Y.; Law, W.; Lai, S. S.; Wong, S.; Lau, K.; Ho, C. Ultra-trace Determination of Sodium Fluoroacetate (1080) as Monofluoroacetate in Milk and Milk Powder by GC-MS/MS and LC-MS/MS. Anal. Methods. 2018, 10, 3514–3524. DOI: 10.1039/C8AY00767E.
  • Cooney, T. P.; Varelis, P.; Bendall, J. G. High-Throughput Quantification of Monofluoroacetate (1080) in Milk as a Response to an Extortion Threat. J. Food. Protect. 2016, 79, 273–281. DOI: 10.4315/0362-028x.jfp-15-405.
  • Bessaire, T.; Tarres, A.; Goyon, A.; Mottier, P.; Dubois, M.; Tan, W. P.; Delatour, T. Quantitative Determination of Sodium Monofluoroacetate “1080” in Infant Formulas and Dairy Products by Isotope Dilution LC-MS/MS. Food. Addit. Contam. A. 2015, 32, 1885–1892. DOI: 10.1080/19440049.2015.1087057.
  • Xu, X.; Cai, Z.; Zhang, J.; Ren, Y.; Han, J. Analysis of Monofluoroacetic Acid in Urine by Liquid chromatography-triple Quadrupole Mass Spectrometry and Preparation of the Positive Sample by the Bioconversion from Monofluoroacetamide to Monofluoroacetic Acid in Vitro. J. Chromatogr. B. 2016, 1027, 131–138. DOI: 10.1016/j.jchromb.2016.05.026.
  • Sporkert, F.; Pragst, F.; Hübner, S.; Mills, G. Headspace solid-phase Microextraction with 1-pyrenyldiazomethane on-fibre Derivatisation for Analysis of Fluoroacetic Acid in Biological Samples. J.Chromatogr. B. 2002, 772, 45–51. DOI: 10.1016/S1570-0232(02)00045-4.
  • Cardador, M. J.; Gallego, M. Determination of Haloacetic Acids in Human Urine by Headspace Gas chromatography–mass Spectrometry. J. Chromatogr. B. 2010, 878, 1824–1830. DOI: 10.1016/j.jchromb.2010.05.022.
  • Wu, F.; Gabryelski, W.; Froese, K. Improved Gas Chromatography Methods for micro-volume Analysis of Haloacetic Acids in Water and Biological Matrices. Analyst. 2002, 127, 1318–1323. DOI: 10.1039/B204574E.
  • Jia, M.; Wu, W. W.; Yost, R. A.; Chadik, P. A.; Stacpoole, P. W.; Henderson, G. N. Simultaneous Determination of Trace Levels of Nine Haloacetic Acids in Biological Samples as Their Pentafluorobenzyl Derivatives by Gas chromatography/tandem Mass Spectrometry in Electron Capture Negative Ion Chemical Ionization Mode. Anal. Chem. 2003, 75, 4065–4080. DOI: 10.1021/ac034036w.
  • Zhao, C.; Fujii, Y.; Yan, J.; Harada, K. H.; Koizumi, A. Pentafluorobenzyl Esterification of Haloacetic Acids in Tap Water for Simple and Sensitive Analysis by Gas chromatography/mass Spectrometry with Negative Chemical Ionization. Chemosphere. 2015, 119, 711–718. DOI: 10.1016/j.chemosphere.2014.07.048.
  • Hodgeson, J. W.; Collins, J.; Barth, R. E. Method 552.2. Determination of Haloacetic Acids in Drinking Water by Liquid Liquid Extraction and Gas Chromatography with Electron Capture Detection. U.S. Environmental Protection Agency. 1995, 1–33.
  • Pepich, B. V.; Munch, D. J.; Domino, M. M.; Fair, P. S.; Xie, Y. Method 552.3: Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Microextraction, Derivatization, Gas Chromatography with Electron Capture Detection Rev 1.0. Environmental Protection Agency. 2003, 1–55.
  • Hammami, B.; Ben Hessin, S.; Bahri, M.; Driss, M. R. Assessment of Haloacetic Acids in Drinking Water in Bizerte, Tunisia. CLEAN-Soil. Air. Water. 2014, 42, 1052–1059. DOI: 10.1002/clen.201300094.
  • Xie, Y. Analyzing Haloacetic Acids Using Gas Chromatography/Mass Spectrometry. Water. Res. 2001, 35, 1599–1602. DOI: 10.1016/S0043-1354(00)00397-3.
  • Ma, W.; Li, W.; Yang, Y.; Yang, J.; Chen, B.; Xie, Y. Derivatization-free multi-step Extraction for Trace Haloacetic Acids Analysis with Ion Chromatography: Performance and Mechanisms. J. Hazard. Mater. 2022, 436, 129166. DOI: 10.1016/j.jhazmat.2022.129166.
  • Tang, S.; Qi, T.; Ansah, P.; Fouemina, J.; Shen, W.; Basheer, C.; Lee, H. Single-Drop Microextraction. Trend. Anal. Chem. 2018, 108, 306–313. DOI: 10.1016/j.trac.2018.09.016.
  • Wang, X.; Kou, D.; Mitra, S. Continuous, on-line Monitoring of Haloacetic Acids via Membrane Extraction. J. Chromatogr. A. 2005, 1089, 39–44. DOI: 10.1016/j.chroma.2005.06.075.
  • Pedersen-Bjergaard, S.; Rasmussen, K. E. Electrokinetic Migration across Artificial Liquid Membranes. New Concept for Rapid Sample Preparation of Biological Fluids. J. Chromatogr. A. 2006, 1109, 183–190. DOI: 10.1016/j.chroma.2006.01.025.
  • Huang, C.; Chen, Z.; Gjelstad, A.; Pedersen-Bjergaard, S.; Shen, X. Electromembrane Extraction. Trend. Ana. Chem. 2017, 95, 47–56. DOI: 10.1016/j.trac.2017.07.027.
  • Alhooshani, K.; Basheer, C.; Kaur, J.; Gjelstad, A.; Rasmussen, K. E.; Pedersen-Bjergaard, S.; Lee, H. K. Electromembrane Extraction and HPLC Analysis of Haloacetic Acids and Aromatic Acetic Acids in Wastewater. Talanta. 2011, 86, 109–113. DOI: 10.1016/j.talanta.2011.08.026.
  • Zhang, X.; Zhang, H.; Liu, Y.; Guo, L.; Ye, J.; Chu, Q. Sensitive Determination of Five Priority Haloacetic Acids by Electromembrane Extraction with Capillary Electrophoresis. Chinese J. Chem. 2015, 33, 235–240. DOI: 10.1002/cjoc.201400633.
  • Kou, D.; Wang, X.; Mitra, S. Supported Liquid Membrane Microextraction with high-performance Liquid chromatography-UV Detection for Monitoring Trace Haloacetic Acids in Water. J. Chromatogr. A. 2004, 1055, 63–69. DOI: 10.1016/j.chroma.2004.09.022.
  • Wang, X.; Saridara, C.; Mitra, S. Microfluidic Supported Liquid Membrane Extraction. Anal. Chim. Acta. 2005, 543, 92–98. DOI: 10.1016/j.aca.2005.04.033.
  • Loos, R.; Barceló, D. Determination of Haloacetic Acids in Aqueous Environments by solid-phase Extraction Followed by ion-pair Liquid chromatography–electrospray Ionization Mass Spectrometric Detection. J. Chromatogr. A. 2001, 938, 45–55. DOI: 10.1016/S0021-9673(01)01092-5.
  • Cardador, M. J.; Gallego, M. Origin of Haloacetic Acids in Milk and Dairy Products. Food. Chem. 2016, 196, 750–756. DOI: 10.1016/j.foodchem.2015.10.011.
  • Luo, Q.; Wang, D.; Wei, Z.; Wang, Z. Optimized Chromatographic Conditions for Separation of Halogenated Acetic Acids by ultra-performance Liquid chromatography-electrospray ionization-mass Spectrometry. J. Chromatogr. A. 2013, 1277, 26–34. DOI: 10.1016/j.chroma.2012.12.046.
  • Bruzzoniti, M. C.; Carlo, R. M. D.; Horvath, K.; Perrachon, D.; Prelle, A.; Tófalvi, R.; Sarzanini, C.; Hajós, P. High Performance Ion Chromatography of Haloacetic Acids on Macrocyclic Cryptand Anion Exchanger. J. Chromatogr. A. 2008, 1187, 188–196. DOI: 10.1016/j.chroma.2008.02.028.
  • Zhang, X.; Saini, C.; Pohl, C.; Liu, Y. Fast Determination of Nine Haloacetic Acids, Bromate and Dalapon in Drinking Water Samples Using Ion chromatography-electrospray Tandem Mass Spectrometry. J. Chromatogr. A. 2020, 1621, 461052. DOI: 10.1016/j.chroma.2020.461052.
  • Verrey, D.; Louyer, M.-V.; Thomas, O.; Baurès, E. Direct Determination of trace-level Haloacetic Acids in Drinking Water by two-dimensional Ion Chromatography with Suppressed Conductivity. Microchem. J. 2013, 110, 608–613. DOI: 10.1016/j.microc.2013.07.012.
  • Parry, E.; Willison, S. A. Direct Aqueous Injection of the Fluoroacetate Anion in Potable Water for Analysis by Liquid Chromatography Tandem mass-spectrometry. Anal. Methods. 2018, 10, 5524–5531. DOI: 10.1039/C8AY02046A.
  • Lajin, B.; Goessler, W. Simultaneous Determination of Chlorinated and Brominated Acetic Acids in Various Environmental Water Matrixes by High-Performance Liquid Chromatography-Inductively Coupled Plasma Tandem Mass Spectrometry without Sample Preparation. Anal. Chem. 2020, 92, 9156–9163. DOI: 10.1021/acs.analchem.0c01456.
  • Rosanne, S.; Charanjit, S.; Christopher, P. The Determination of Haloacetic Acids in Real World Samples Using IC-ESI-MS-MS. J. Chromatogr. Sci. 2009, 47, 523–528. DOI: 10.1093/chromsci/47.7.523.
  • Liu, L.; Hu, S.; Zhai, S.; Hai, X. Analysis of Monofluoroacetic Acid in Human Plasma by UFLC–MS/MS and Its Application in Patients with Sodium Monofluoroacetate or Monofluoroacetamide Poisoning. J. Pharmaceut. Biomed. 2018, 158, 370–375. DOI: 10.1016/j.jpba.2018.06.028.
  • Murakami, J. N.; Zhang, X.; Ye, J.; MacDonald, A. M.; Pérez, J.; Kinniburgh, D. W.; Kimura, S. Y. Formation Potential and Analysis of 32 Regulated and Unregulated Disinfection by-products: Two New Simplified Methods. J. Environ. Sci. 2022, 117, 209–221. DOI: 10.1016/j.jes.2022.04.037.
  • Gallidabino, M. D.; Hamdan, L.; Murphy, B.; Barron, L. P. Suspect Screening of Halogenated Carboxylic Acids in Drinking Water Using Ion Exchange chromatography-high Resolution (Orbitrap) Mass Spectrometry (IC-HRMS). Talanta. 2018, 178, 57–68. DOI: 10.1016/j.talanta.2017.08.092.
  • Ells, B.; Barnett, D. A.; Purves, R. W.; Guevremont, R. Detection of Nine Chlorinated and Brominated Haloacetic Acids at Part-per-Trillion Levels Using ESI-FAIMS-MS. Anal. Chem. 2000, 72, 4555–4559. DOI: 10.1021/ac000341v.
  • Byun, C.; Song, J.; Lee, S.; Kim, D.; Lee, D. Salt Effects on the Retention of Peptides in Hydrophobic Interaction Chromatography. J. LIQ. CHROM. & REL. TECHNOL. 2007, 23(19), 2963–2978. DOI: 10.1081/JLC-100101836.
  • Dixon, A.; Delinsky, D.; Bruckner, J.; Fisher, J.; Bartlett, M. Analysis of Dichloroacetic Acid in Drinking Water by Ion Exchange HILIC-LC/MS/MS. J. LIQ. CHROM. & REL. TECHNOL. 2009, 27, 2343–2355. DOI: 10.1081/JLC-200028136.
  • Santos-Barbosa, J. M.; Lee, S. T.; Cook, D.; Gardner, D. R.; Viana, L. H.; Ré, N. A Gas Chromatography–Mass Spectrometry Method for the Detection and Quantitation of Monofluoroacetate in Plants Toxic to Livestock. J. Agric. Food. Chem. 2017, 65, 1428–1433. DOI: 10.1021/acs.jafc.7b00294.
  • Rodriguez, I.; Pythias, M.; Espino, M. Occurrence and Determination of Haloacetic Acids in Metro Manila Drinking Water. Sci. Diliman. 2009, 21, 35–41.
  • Andersson, A.; Ashiq, M. J.; Shoeb, M.; Karlsson, S.; Bastviken, D.; Kylin, H. Evaluating Gas Chromatography with a halogen-specific Detector for the Determination of Disinfection by-products in Drinking Water. Environ. Sci. Pollut. R. 2019, 26, 7305–7314. DOI: 10.1007/s11356-018-1419-2.
  • Kinani, A.; Olivier, J.; Roumiguières, A.; Bouchonnet, S.; Kinani, S. A Sensitive and Specific solid-phase extraction–gas chromatography–tandem Mass Spectrometry Method for the Determination of 11 Haloacetic Acids in Aqueous Samples. Eur. J.Mass. Spectrom. 2018, 24, 375–383. DOI: 10.1177/1469066718781302.
  • Buchweitz, J. P.; Johnson, M.; Lehner, A. F. Pentafluorobenzylation and Detection of Sodium Monofluoroacetate (Compound 1080) in Veterinary Samples Using Gas chromatography/tandem Quadrupole Mass Spectrometry with Multiple Reaction Monitoring. Rapid. Commun. Mass. Spectrom. 2021, 35, e8973. DOI: 10.1002/rcm.8973.
  • Smith, D.; Lynam, K. Determination of Haloacetic Acids in Water by Gc/µecd Using Agilent J&W DB-35ms Ultra Inert and DB-XLB Columns. Agilent Technologies. 2011, 1–10.
  • Hodgeson, J. W. Determination of Haloacetic Acids and Dalapon in Drinking Water by Ion-Exchange Liquid-Solid Extraction and Gas Chromatography with an Electron Capture Detector. U.S. Environmental Protection Agency. 1992, 552.551–551-552.551–530.
  • Gilcreas, F.W. Standard Methods for the Examination of Water and Waste Water. Am J Public Health Nations Health. 1966, 56, 387–388. DOI: 10.2105/ajph.56.3.387.
  • Lovelock, J. E. A Sensitive Detector for Gas Chromatography. J. Chromatogr. A. 1958, 1, 35–46. DOI: 10.1016/S0021-9673(00)93398-3.
  • Lu, Q.; Wu, P.; Collins, G. E. Contactless Conductivity Detection of Sodium Monofluoroacetate in Fruit Juices on a CE Microchip. Electrophoresis. 2007, 28, 3485–3491. DOI: 10.1002/elps.200600723.
  • Ding, Y.; Rogers, K. Determination of Haloacetic Acids in Water Using solid-phase extraction/microchip Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Electrophoresis. 2010, 31, 2602–2607. DOI: 10.1002/elps.200900496.
  • Bernad, J. O.; Damascelli, A.; Núñez, O.; Galceran, M. T. In-line Preconcentration Capillary Zone Electrophoresis for the Analysis of Haloacetic Acids in Water. Electrophoresis. 2011, 32, 2123–2130. DOI: 10.1002/elps.201000676.
  • Zhang, H.; Zhu, J.; Aranda-Rodriguez, R.; Feng, Y.-L. Pressure-assisted Electrokinetic Injection for on-line Enrichment in Capillary electrophoresis–mass Spectrometry: A Sensitive Method for Measurement of ten Haloacetic Acids in Drinking Water. Anal. Chim. Acta. 2011, 706, 176–183. DOI: 10.1016/j.aca.2011.07.040.
  • Ahrer, W.; Buchberger, W. Determination of Haloacetic Acids by the Combination of non-aqueous Capillary Electrophoresis and Mass Spectrometry. Fresenius J. Anal. Chem. 1999, 365, 604–609. DOI: 10.1007/s002160051530.
  • Höcker, O.; Bader, T.; Schmidt, T. C.; Schulz, W.; Neusüß, C. Enrichment-free Analysis of Anionic Micropollutants in the sub-ppb Range in Drinking Water by Capillary electrophoresis-high Resolution Mass Spectrometry. Anal. Bioanal. Chem. 2020, 412, 4857–4865. DOI: 10.1007/s00216-020-02525-8.
  • Adams, C. D.; Cozzens, R. A.; Kim, B. J. Effects of Ozonation on the Biodegradability of Substituted Phenols. Water. Res. 1997, 31, 2655–2663. DOI: 10.1016/S0043-1354(97)00114-0.
  • Dilmeghani, M.; Zahir, K. O. Kinetics and Mechanism of Chlorobenzene Degradation in Aqueous Samples Using Advanced Oxidation Processes. J. Environ. Qual. 2001, 30, 2062–2070. DOI: 10.2134/jeq2001.2062.
  • Hozalski, R. M.; Zhang, L.; Arnold, W. A. Reduction of Haloacetic Acids by Fe0:  Implications for Treatment and Fate. Environ. Sci. Technol. 2001, 35, 2258–2263. DOI: 10.1021/es001785b.
  • Lifongo, L. L.; Bowden, D. J.; Brimblecombe, P. Thermal Degradation of Haloacetic Acids in Water. Int. J.Phys.Sci. 2010, 5, 738–747.
  • Kamat, P. V.; Huehn, R.; Nicolaescu, R. A “Sense and Shoot” Approach for Photocatalytic Degradation of Organic Contaminants in Water. J. Phys. Chem. B. 2002, 106, 788–794. DOI: 10.1021/jp013602t.
  • Chen, S.; Deng, J.; Li, L.; Gao, N. Evaluation of Disinfection by-product Formation during Chlor(am)ination from Algal Organic Matter after UV Irradiation. Environ. Sci. Pollut. Res. 2018, 25, 5994–6002. DOI: 10.1007/s11356-017-0918-x.
  • Zhang, J.; Zhang, H.; Liu, X.; Cui, F.; Zhao, Z. Efficient Reductive and Oxidative Decomposition of Haloacetic Acids by the vacuum-ultraviolet/sulfite System. Water. Res. 2022, 210, 117974. DOI: 10.1016/j.watres.2021.117974.
  • Hu, J.; Wang, C.; Ye, Z.; Dong, H.; Li, M.; Chen, J.; Qiang, Z. Degradation of Iodinated Disinfection Byproducts by VUV/UV Process Based on a mini-fluidic VUV/UV Photoreaction System. Water. Res. 2019, 158, 417–423. DOI: 10.1016/j.watres.2019.03.056.
  • Jo, C. H.; Dietrich, A. M.; Tanko, J. M. Simultaneous Degradation of Disinfection Byproducts and earthy-musty Odorants by the UV/H2O2 Advanced Oxidation Process. Water. Res. 2011, 45, 2507–2516. DOI: 10.1016/j.watres.2011.02.006.
  • Hidayah, E. N.; Pachwarya, R. B.; Cahyonugroho, O. H. Immobilization of Resin Photocatalyst in Removal of Soluble Effluent Organic Matter and Potential for Disinfection by-products. Global. J. Environ. Sci. Manag. 2022, 8, 437–448. DOI: 10.22034/gjesm.2022.03.10.
  • Lifongo, L. L.; Bowden, D. J.; Brimblecombe, P. Photodegradation of Haloacetic Acids in Water. Chemosphere. 2004, 55, 467–476. DOI: 10.1016/j.chemosphere.2003.11.006.
  • Alavi, S. N.; Jozi, S. A.; Tahvildar, K.; Khoramnezhadian, S. Advanced Oxidation Process for Haloacetic Acid Removal in Tehranpars Water Treatment Using CuO Nanocatalyst. J.Appl. Chem. Res. 2021, 15, 36–45.
  • Mourão, A. O.; Silva, D. F.; Rodriguez, M.; Torres, T. S.; Franco, E. S.; Pádua, V. L.; da Silva Faria, M. C.; Maia, L. F. O.; Rodrigues, J. L. Degradation of Haloacetic Acids with the Fenton-like and Analysis by GC-MS: Use of Bioassays for Monitoring of Genotoxic, Mutagenic and Cytotoxic Effects. Environ. Monit. Assess. 2019, 191, 513. DOI: 10.1007/s10661-019-7642-6.
  • Hama Aziz, K. H.; Miessner, H.; Mahyar, A.; Mueller, S.; Kalass, D.; Moeller, D.; Omer, K. M. Removal of Dichloroacetic Acid from Aqueous Solution Using non-thermal Plasma Generated by Dielectric Barrier Discharge and nano-pulse Corona Discharge. Sep. Purif. Technol. 2019, 216, 51–57. DOI: 10.1016/j.seppur.2019.01.074.
  • Ratasuk, C.; Kositanont, C.; Ratanatamskul, C. Removal of Haloacetic Acids by Ozone and Biologically Active Carbon. ScienceAsia. 2008, 34. DOI: 10.2306/scienceasia1513-1874.2008.34.293.
  • Karnik, B. S.; Davies, S. H.; Baumann, M. J.; Masten, S. J. The Effects of Combined Ozonation and Filtration on Disinfection by-product Formation. Water. Res. 2005, 39, 2839–2850. DOI: 10.1016/j.watres.2005.04.073.
  • Lou, J. C.; Chang, C. J.; Chen, W. H.; Tseng, W. B.; Han, J. Y. Removal of Trihalomethanes and Haloacetic Acids from Treated Drinking Water by Biological Activated Carbon Filter. Water. Air. Soil. Poll. 2014, 225, 1851. DOI: 10.1007/s11270-013-1851-3.
  • Tung, H. H.; Unz, R.; Xie, Y. Evidences of HAAs Biodegradation in GAC Filtration. J. Environ. Manage. 2009, 19, 107–112. DOI: 10.1002/j.1551-8833.2006.tb07687.x.
  • Liu, Z.; Zhang, Z.; Peng, J.; Wu, J.; Huo, Y. Rapid Removal of Trace Haloacetic Acids from Drinking Water by a Continuous Adsorption Process Using Graphene Oxide. Environ. Technol. 2020, 1–7. DOI: 10.1080/09593330.2020.1841307.
  • Liu, Z.; Wang, X.; Luo, Z.; Huo, M.; Wu, J.; Huo, H.; Yang, W. Removing of Disinfection By-Product Precursors from Surface Water by Using Magnetic Graphene Oxide. PLoS One. 2015, 10, e0143819. DOI: 10.1371/journal.pone.0143819.
  • Yin, J.; Deng, B. Polymer-matrix Nanocomposite Membranes for Water Treatment. J. Membr. Sci. 2015, 479, 256–275. DOI: 10.1016/j.memsci.2014.11.019.
  • Wang, L.; Sun, Y.; Chen, B. Rejection of Haloacetic Acids in Water by multi-stage Reverse Osmosis: Efficiency, Mechanisms, and Influencing Factors. Water. Res. 2018, 144, 383–392. DOI: 10.1016/j.watres.2018.07.045.
  • Chen, B.; Zhang, C.; Wang, L.; Yang, J.; Sun, Y. Removal of Disinfection Byproducts in Drinking Water by Flexible Reverse Osmosis: Efficiency Comparison, Fates, Influencing Factors, and Mechanisms. J. Hazard. Mater. 2021, 401, 123408. DOI: 10.1016/j.jhazmat.2020.123408.
  • Chalatip, R.; Chawalit, R.; Nopawan, R. Removal of Haloacetic Acids by Nanofiltration. J. Environ. Sci. 2009, 21, 96–100. DOI: 10.1016/S1001-0742(09)60017-6.
  • Yang, L.; She, Q.; Wan, M. P.; Wang, R.; Chang, V. W. C.; Tang, C. Y. Removal of Haloacetic Acids from Swimming Pool Water by Reverse Osmosis and Nanofiltration. Water. Res. 2017, 116, 116–125. DOI: 10.1016/j.watres.2017.03.025.
  • Yang, J.; Yuan, D.; Weng, T. Pilot Study of Drinking Water Treatment with GAC, O3/BAC and Membrane Processes in Kinmen Island, Taiwan. Desalination. 2010, 263, 271–278. DOI: 10.1016/j.desal.2010.06.069.
  • Zhao, X.; Li, A.; Mao, R.; Liu, H.; Qu, J. Electrochemical Removal of Haloacetic Acids in a three-dimensional Electrochemical Reactor with Pd-GAC Particles as Fixed Filler and Pd-modified Carbon Paper as Cathode. Water. Res. 2014, 51, 134–143. DOI: 10.1016/j.watres.2013.12.028.
  • McRae, B. M.; LaPara, T. M.; Hozalski, R. M. Biodegradation of Haloacetic Acids by Bacterial Enrichment Cultures. Chemosphere. 2004, 55, 915–925. DOI: 10.1016/j.chemosphere.2003.11.048.
  • Zhang, Y.; Lu, Z.; Zhang, Z.; Shi, B.; Hu, C.; Lyu, L.; Zuo, P.; Metz, J.; Wang, H. Heterogeneous Fenton-like Reaction Followed by GAC Filtration Improved Removal Efficiency of NOM and DBPs without Adjusting pH. Sep. Purif. Technol. 2021, 260, 118234. DOI: 10.1016/j.seppur.2020.118234.
  • Lou, J. C.; Chan, H. Y.; Yang, C. Y.; Tseng, W. B.; Han, J. Y. Reducing and Verifying Haloacetic Acids in Treated Drinking Water Using a Biological Filter System. J. Environ. Sci. Health. A. Toxicol. Hazard. Subst. Environ. Eng. 2014, 49, 1693–1700. DOI: 10.1080/10934529.2014.951237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.