470
Views
1
CrossRef citations to date
0
Altmetric
Review

Development and Current Trends on Ion Exchange Materials

, , , &
Pages 40-60 | Received 25 Oct 2021, Accepted 01 Nov 2022, Published online: 05 Dec 2022

REFERENCES

  • Thompson, H. S.; Way, J. T.; Royal Agricultural Society of England. On the Absorbent Power of Soils, London: Royal Agricultural Society of England, 1850.
  • Way, J. T.; On the Power of Soils to Absorb Manure; 1850.
  • History of ion exchange http://dardel.info/IX/other_info/history.html (accessed Mar 26, 2022).
  • Folin, O.; Bell, R. D. Applications of a New Reagent for the Separation of Ammonia: I. The Colorimetric Determination of Ammonia in Urine. J. Biol. Chem. 1917, 29(2), 329–335. DOI: 10.1016/S0021-9258(18)86796-5.
  • Gans, R.;. Zeolites and Similar Compounds, Their Constitution and Significance for Technology and Agriculture. Jahrb Preuss Geol Landesanst Berl. 1905, 26, 179–182.
  • Adams, B. A.;. Adsorptive Properties of Synthetic Resins. J.Soc. Chem. Ind. 1935, 54(1), 1–6.
  • Alexandratos, S. D.;. Trends in Ion Exchange: Analysis of the Literature. React. Funct. Polym. 2021, 169, 105066. DOI: 10.1016/j.reactfunctpolym.2021.105066.
  • O’Connor, S. J.; MacKenzie, K. J. D.; Smith, M. E.; Hanna, J. V. Ion Exchange in the Charge-Balancing Sites of Aluminosilicate Inorganic Polymers. J. Mater. Chem. 2010, 20(45), 10234–10240. DOI: 10.1039/C0JM01254H.
  • Verburg, K.; Baveye, P. Hysteresis in the Binary Exchange of Cations on 2:1 Clay Minerals: A Critical Review. Clays Clay Miner. 1994, 42(2), 207–220. DOI: 10.1346/CCMN.1994.0420211.
  • Ran, J.; Wu, L.; He, Y.; Yang, Z.; Wang, Y.; Jiang, C.; Ge, L.; Bakangura, E.; Xu, T. Ion Exchange Membranes: New Developments and Applications. J. Membr. Sci. 2017, 522, 267–291. DOI: 10.1016/j.memsci.2016.09.033.
  • Jiang, S.; Sun, H.; Wang, H.; Ladewig, B. P.; Yao, Z. A Comprehensive Review on the Synthesis and Applications of Ion Exchange Membranes. Chemosphere. 2021, 282, 130817. DOI: 10.1016/j.chemosphere.2021.130817.
  • Kumar, P.; Pournara, A.; Kim, K.-H.; Bansal, V.; Rapti, S.; Manos, M. J. Metal-Organic Frameworks: Challenges and Opportunities for Ion-Exchange/Sorption Applications. Prog. Mater. Sci. 2017, 86, 25–74. DOI: 10.1016/j.pmatsci.2017.01.002.
  • Botelho Junior, A. B.; Dreisinger, D. B.; Espinosa, D. C. R.; A Review of Nickel, Copper, and Cobalt Recovery by Chelating Ion Exchange Resins from Mining Processes and Mining Tailings. Min. Metall. Explor. 2019, 361, 199–213. DOI:10.1007/s42461-018-0016-8.
  • Shehzad, M. A.; Yasmin, A.; Ge, X.; Wu, L.; Xu, T. A Review of Nanostructured Ion-Exchange Membranes. Adv. Mater. Technol. 2021, 6(10), 2001171. DOI: 10.1002/admt.202001171.
  • He, G.; Li, Z.; Zhao, J.; Wang, S.; Wu, H.; Guiver, M. D.; Jiang, Z. Nanostructured Ion-Exchange Membranes for Fuel Cells: Recent Advances and Perspectives. Adv. Mater. 2015, 27(36), 5280–5295. DOI: 10.1002/adma.201501406.
  • Leong, J. X.; Daud, W. R. W.; Ghasemi, M.; Liew, K. B.; Ismail, M. Ion Exchange Membranes as Separators in Microbial Fuel Cells for Bioenergy Conversion: A Comprehensive Review. Renew. Sustain. Energy Rev. 2013, 28, 575–587. DOI: 10.1016/j.rser.2013.08.052.
  • Gebreeyessus, G. D.;. Status of Hybrid Membrane–Ion-Exchange Systems for Desalination: A Comprehensive Review. Appl. Water Sci. 2019, 9(5), 135. DOI: 10.1007/s13201-019-1006-9.
  • Sole, K. C.; Mooiman, M. B.; Hardwick, E. Ion Exchange in Hydrometallurgical Processing: An Overview and Selected Applications. Sep. Purif. Rev. 2018, 47(2), 159–178. DOI: 10.1080/15422119.2017.1354304.
  • Fiskum, S. K.; Pease, L. F.; Peterson, R. A. Review of Ion Exchange Technologies for Cesium Removal from Caustic Tank Waste. Solvent Extr. Ion Exch. 2020, 38(6), 573–611. DOI: 10.1080/07366299.2020.1780688.
  • Nguyen, T. H.; Lee, M. S. A Review on Separation of Gallium and Indium from Leach Liquors by Solvent Extraction and Ion Exchange. Miner. Process. Extr. Metall. Rev. 2019, 40(4), 278–291. DOI: 10.1080/08827508.2018.1538987.
  • Islam, M.; Awual, A.; Md, R.; Angove, M. J. A Review on Nickel(II) Adsorption in Single and Binary Component Systems and Future Path. J. Environ. Chem. Eng. 2019, 7(5), 103305. DOI: 10.1016/j.jece.2019.103305.
  • Wang, B.; Koike, N.; Iyoki, K.; Chaikittisilp, W.; Wang, Y.; Wakihara, T.; Okubo, T. Insights into the Ion-Exchange Properties of Zn(II)-Incorporated MOR Zeolites for the Capture of Multivalent Cations. Phys. Chem. Chem. Phys. 2019, 21(7), 4015–4021. DOI: 10.1039/C8CP06975A.
  • Zeolite - Clinoptilolite. https://www.chemtube3d.com/ss-z-clinoptilolite/ (accessed Apr 9, 2022).
  • Mumpton, F. A.;. La Roca Magica: Uses of Natural Zeolites in Agriculture and Industry. Proc. Natl. Acad. Sci. 1999, 96(7), 3463–3470. DOI: 10.1073/pnas.96.7.3463.
  • Woods, R.-M.; Gunter, M. E. Na- and Cs-Exchange in a Clinoptilolite-Rich Rock: Analysis of the Outgoing Cations in Solution. Am. Mineral. 2001, 86(4), 424–430. DOI: 10.2138/am-2001-0405.
  • Nilchi, A.; Maalek, B.; Khanchi, A.; Ghanadi Maragheh, M.; Bagheri, A.; Savoji, K. Ion Exchangers in Radioactive Waste Management: Natural Iranian Zeolites. Appl. Radiat. Isot. 2006, 64(1), 138–143. DOI: 10.1016/j.apradiso.2005.06.013.
  • Fang, X.; Xu, Z.; Luo, Y.; Ren, L.; Hua, W. Removal of Radionuclides from Laundry Wastewater Containing Organics and Suspended Solids Using Inorganic Ion Exchanger. Procedia Environ. Sci. 2016, 31, 375–381. DOI: 10.1016/j.proenv.2016.02.053.
  • Malekian, R.; Abedi-Koupai, J.; Eslamian, S. S.; Mousavi, S. F.; Abbaspour, K. C.; Afyuni, M. Ion-Exchange Process for Ammonium Removal and Release Using Natural Iranian Zeolite. Appl. Clay Sci. 2011, 51(3), 323–329. DOI: 10.1016/j.clay.2010.12.020.
  • Whitworth, T. M.; Clay Minerals: Ion ExchangeIon Exchange. In Geochemistry; Dordrecht: Springer, 1998; pp 85–87. 10.1007/1-4020-4496-8_56.
  • Rawat, J. P.; Umar Iraqi, S. M.; Singh, R. P.; Sorption Equilibria of Cobalt(II) on Two Types of Indian Soils — The Natural Ion Exchangers. Colloids Surf. A: Physicochem. Eng. Aspects. 1996, 117(1), 183–188. DOI:10.1016/0927-7757(96)03700-4.
  • Rawat, J. P.; Ansari, A. A.; Singh, R. P. Sorption Equilibria of Lead(II) on Some Indian Soils — The Natural Ion Exchangers. Colloids Surf. 1990, 50, 207–214. DOI: 10.1016/0166-6622(90)80264-5.
  • Zou, Y.-C.; Mogg, L.; Clark, N.; Bacaksiz, C.; Milovanovic, S.; Sreepal, V.; Hao, G.-P.; Wang, Y.-C.; Hopkinson, D. G.; Gorbachev, R., et al. Ion Exchange in Atomically Thin Clays and Micas. Nat. Mater.2021, 20(12), 1677–1682. DOI: 10.1038/s41563-021-01072-6.
  • Wu, Q.; Liang, D.; Lu, S.; Zhang, J.; Wang, H.; Xiang, Y.; Aurbach, D. Novel Inorganic Integrated Membrane Electrodes for Membrane Capacitive Deionization. ACS Appl. Mater. Interfaces. 2021. DOI: 10.1021/acsami.1c10119.
  • da Fonseca, M. G.; de Oliveira, M. M.; Arakaki, L. N. H.; Espinola, J. G. P.; Airoldi, C. Natural Vermiculite as an Exchanger Support for Heavy Cations in Aqueous Solution. J. Colloid Interface Sci. 2005, 285(1), 50–55. DOI: 10.1016/j.jcis.2004.11.031.
  • Huang, K.; Rowe, P.; Chi, C.; Sreepal, V.; Bohn, T.; Zhou, K.-G.; Su, Y.; Prestat, E.; Pillai, P. B.; Cherian, C. T., et al. Cation-Controlled Wetting Properties of Vermiculite Membranes and Its Promise for Fouling Resistant Oil–Water Separation. Nat. Commun. 2020, 11(1), 1097. DOI: 10.1038/s41467-020-14854-4.
  • Neagu, V.; Bunia, I.; Luca, C. Organic Ion Exchangers. Synthesis and Their Behaviour in the Retention of Some Metal Ions. Macromol. Symp. 2006, 235(1), 136–142. DOI: 10.1002/masy.200650317.
  • Kabay, N.; Demircioglu, M.; Yayli, S.; Yuksel, M.; Saglam, M.; Levison, P. R. Removal of Metal Ions from Aqueous Solution by Cellulose Ion Exchangers. Sep. Sci. Technol. 1999, 34(1), 41–51. DOI: 10.1081/SS-100100635.
  • Waly, A.; Abdel-Mohdy, F. A.; Aly, A. S.; Hebeish, A. Synthesis and Characterization of Cellulose Ion Exchanger. II. Pilot Scale and Utilization in Dye–Heavy Metal Removal. J. Appl. Polym. Sci. 1998, 68(13), 2151–2157. DOI: 10.1002/(SICI)1097-4628(19980627)68:13<2151::AID-APP11>3.0.CO;2-2.
  • Akatsu, E.; Ono, R.; Tsukuechi, K.; Uchiyama, H. Radiochemical Study of Adsorption Behavior of Inorganic Ions on Zirconium Phosphate, Silica Gel and Charcoal. J. Nucl. Sci. Technol. 1965, 2(4), 141–148. DOI: 10.1080/18811248.1965.9732181.
  • Chen, Q.;. Study on the Adsorption of Lanthanum(III) from Aqueous Solution by Bamboo Charcoal. J. Rare Earths. 2010, 28, 125–131. DOI: 10.1016/S1002-0721(10)60272-4.
  • Lafferty, C.; Hobday, M.; The Use of Low Rank Brown Coal as an Ion Exchange Material: 1. Basic Parameters and the Ion Exchange Mechanism. Fuel. 1990, 691, 78–83. DOI:10.1016/0016-2361(90)90261-N.
  • Pentari, D.; Perdikatsis, V.; Katsimicha, D.; Kanaki, A. Sorption Properties of Low Calorific Value Greek Lignites: Removal of Lead, Cadmium, Zinc and Copper Ions from Aqueous Solutions. J. Hazard. Mater. 2009, 168(2), 1017–1021. DOI: 10.1016/j.jhazmat.2009.02.131.
  • Crist, R. H.; Martin, J. R.; Chonko, J.; Crist, D. R. Uptake of Metals on Peat Moss:  An Ion-Exchange Process. Environ. Sci. Technol. 1996, 30(8), 2456–2461. DOI: 10.1021/es950569d.
  • Khandaker, S.; Kuba, T.; Toyohara, Y.; Kamida, S.; Uchikawa, Y. Development of Ion-Exchange Properties of Bamboo Charcoal Modified with Concentrated Nitric Acid. IOP Conf. Ser. Earth Environ. Sci. 2017, 82, 012002. DOI: 10.1088/1755-1315/82/1/012002.
  • Najib, N.; Christodoulatos, C. Removal of Arsenic Using Functionalized Cellulose Nanofibrils from Aqueous Solutions. J. Hazard. Mater. 2019, 367, 256–266. DOI: 10.1016/j.jhazmat.2018.12.067.
  • Mautner, A.; Maples, H. A.; Kobkeatthawin, T.; Kokol, V.; Karim, Z.; Li, K.; Bismarck, A. Phosphorylated Nanocellulose Papers for Copper Adsorption from Aqueous Solutions. Int. J. Environ. Sci. Technol. 2016, 13(8), 1861–1872. DOI: 10.1007/s13762-016-1026-z.
  • da Costa, T. B.; da Silva, T. L.; Costa, C. S. D.; da Silva, M. G. C.; Vieira, M. G. A. Chromium Adsorption Using Sargassum Filipendula Algae Waste from Alginate Extraction: Batch and Fixed-Bed Column Studies. Chem. Eng. J. Adv. 2022, 11, 100341. DOI: 10.1016/j.ceja.2022.100341.
  • Cardoso, S. L.; Costa, C. S. D.; Nishikawa, E.; da Silva, M. G. C.; Vieira, M. G. A. Biosorption of Toxic Metals Using the Alginate Extraction Residue from the Brown Algae Sargassum Filipendula as a Natural Ion-Exchanger. J. Clean. Prod. 2017, 165, 491–499. DOI: 10.1016/j.jclepro.2017.07.114.
  • Rae, I. B.; Pap, S.; Svobodova, D.; Gibb, S. W. Comparison of Sustainable Biosorbents and Ion-Exchange Resins to Remove Sr2+ from Simulant Nuclear Wastewater: Batch, Dynamic and Mechanism Studies. Sci. Total Environ. 2019, 650, 2411–2422. DOI: 10.1016/j.scitotenv.2018.09.396.
  • Wang, Q.; Wang, Y.; Tang, J.; Yang, Z.; Zhang, L.; Huang, X. New Insights into the Interactions between Pb(II) and Fruit Waste Biosorbent. Chemosphere. 2022, 303, 135048. DOI: 10.1016/j.chemosphere.2022.135048.
  • Jokar, M.; Mirghaffari, N.; Soleimani, M.; Jabbari, M. Preparation and Characterization of Novel Bio Ion Exchanger from Medicinal Herb Waste (Chicory) for the Removal of Pb2+ and Cd2+ from Aqueous Solutions. J. Water Process. Eng. 2019, 28, 88–99. DOI: 10.1016/j.jwpe.2019.01.007.
  • Wang, Q.; Wang, Y.; Yang, Z.; Han, W.; Yuan, L.; Zhang, L.; Huang, X. Efficient Removal of Pb(II) and Cd(II) from Aqueous Solutions by Mango Seed Biosorbent. Chem. Eng. J. Adv. 2022, 11, 100295. DOI: 10.1016/j.ceja.2022.100295.
  • Iqbal, M.; Saeed, A.; Zafar, S. I. F. T. I. R. S. Kinetics and Adsorption Isotherms Modeling, Ion Exchange, and EDX Analysis for Understanding the Mechanism of Cd2+ and Pb2+ Removal by Mango Peel Waste. J. Hazard. Mater. 2009, 164(1), 161–171. DOI: 10.1016/j.jhazmat.2008.07.141.
  • Ranasinghe, S. H.; Navaratne, A. N.; Priyantha, N. Enhancement of Adsorption Characteristics of Cr(III) and Ni(II) by Surface Modification of Jackfruit Peel Biosorbent. J. Environ. Chem. Eng. 2018, 6(5), 5670–5682. DOI: 10.1016/j.jece.2018.08.058.
  • Lucy, C. A.;. Evolution of Ion-Exchange: From Moses to the Manhattan Project to Modern Times. J. Chromatogr. A. 2003, 1000(1), 711–724. DOI: 10.1016/S0021-9673(03)00528-4.
  • Zagorodni, A. A.;. Ion Exchange Materials: Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2006.
  • Qureshi, M.; Nabi, S. A.; Zehra, N. S. Ion-Exchange Properties, and Analytical Applications of Thermally Stable Tin(IV) Vanadate. Can. J. Chem. 2011. DOI: 10.1139/v77-235.
  • Khan, M. A.;. Amorphous Inorganic Ion Exchangers; CRC Press: Boca Raton, FL, USA, 2019, pp 177–270. DOI: 10.1201/9780203750780-6.
  • Yamasaki, N.; Kanahara, S.; Yanagisawa, K. Adsorptions of Strontium and Cesium Ions on Hydrothermally Altered Minerals of Feldspar, lithia-mica and Bauxite. Nippon Kagaku Kaishi Jpn. 1984, 1984, 12.
  • Hague, J. L.; Maczkowske, E. E.; Bright, H. A.; Determination of Nickel, Manganese, Cobalt, and Iron in High-Temperature Alloys, Using Anion-Exchange Separations. J. Res. Natl. Bur. Stand. 1954, 536, 353.
  • Qureshi, M.; Sharma, S. D. Prediction of Ksp from Rf Values. Chromatography of 48 Metal Ions on Stannic Arsenate and Plain Papers in Butanol-Nitric Acid Media. Anal. Chem. 1973, 45(7), 1283–1288. DOI: 10.1021/ac60329a005.
  • Rawat, J. P.; Mujtaba, S. Q. Separation of Metal Ions on Titanium(IV) Molybdate Papers. Sep. Sci. 1975, 10(2), 151–160. DOI: 10.1080/00372367508058997.
  • Alberti, G.; Conte, A.; Grassini, G.; Lederer, M. The Separation of Inorganic Ions by Electrophoresis on Paper Impregnated with Ion Exchangers. J. Electroanal. Chem. 1962, 4(5), 301–308. 1959. DOI: 10.1016/S0022-0728(62)80070-9.
  • Varshney, K. G.; Gupta, U. Tin(IV) Antimonate as a Lead-Selective Cation Exchanger: Synthesis, Characterization, and Analytical Applications. Bull. Chem. Soc. Jpn. 1990, 63(5), 1515–1520. DOI: 10.1246/bcsj.63.1515.
  • Varshney, K. S.;. Ion-Exchange and Physico- Chemical Studies on a Polystyrene Cerium(IV) Phosphate Hybrid Fibrous Ion Exchanger. Ind. J. Chem. Anal. 2004, 43A(12), 2584–2589. https://www.nopr.niscpr.res.in/IJCA.43A(12).2586-2589.pdf
  • Chubar, N.; Gilmour, R.; Gerda, V.; Mičušík, M.; Omastova, M.; Heister, K.; Man, P.; Fraissard, J.; Zaitsev, V. Layered Double Hydroxides as the Next Generation Inorganic Anion Exchangers: Synthetic Methods versus Applicability. Adv. Colloid Interface Sci. 2017, 245, 62–80. DOI: 10.1016/j.cis.2017.04.013.
  • Tran, H. N.; Nguyen, D. T.; Le, G. T.; Tomul, F.; Lima, E. C.; Woo, S. H.; Sarmah, A. K.; Nguyen, H. Q.; Nguyen, P. T.; Nguyen, D. D., et al. Adsorption Mechanism of Hexavalent Chromium onto Layered Double Hydroxides-Based Adsorbents: A Systematic in-Depth Review. J. Hazard. Mater. 2019, 373, 258–270. DOI: 10.1016/j.jhazmat.2019.03.018.
  • Mondale, K. D.; Carland, R. M.; Aplan, F. F. The Comparative Ion Exchange Capacities of Natural Sedimentary and Synthetic Zeolites. Miner. Eng. 1995, 8(4), 535–548. DOI: 10.1016/0892-6875(95)00015-I.
  • Khandaker, S.; Toyohara, Y.; Saha, G. C.; Awual, R., Md.; Kuba, T. Development of Synthetic Zeolites from Bio-Slag for Cesium Adsorption: Kinetic, Isotherm and Thermodynamic Studies. J. Water Process. Eng. 2020, 33, 101055. DOI: 10.1016/j.jwpe.2019.101055.
  • Oliveira, J. A.; Cunha, F. A.; Ruotolo, L. A. M. Synthesis of Zeolite from Sugarcane Bagasse Fly Ash and Its Application as a Low-Cost Adsorbent to Remove Heavy Metals. J. Clean. Prod. 2019, 229, 956–963. DOI: 10.1016/j.jclepro.2019.05.069.
  • Wang, Y.; Jia, H.; Chen, P.; Fang, X.; Du, T. Synthesis of La and Ce Modified X Zeolite from Rice Husk Ash for Carbon Dioxide Capture. J. Mater. Res. Technol. 2020, 9(3), 4368–4378. DOI: 10.1016/j.jmrt.2020.02.061.
  • Pangan, N.; Gallardo, S.; Gaspillo, P.; Kurniawan, W.; Hinode, H.; Promentilla, M. Hydrothermal Synthesis and Characterization of Zeolite A from Corn (Zea Mays) Stover Ash. Materials. 2021, 14(17), 4915. DOI: 10.3390/ma14174915.
  • Dutta, P.; Wang, B. Zeolite-Supported Silver as Antimicrobial Agents. Coord. Chem. Rev. 2019, 383, 1–29. DOI: 10.1016/j.ccr.2018.12.014.
  • Sakai, M.; Sasaki, Y.; Tomono, T.; Seshimo, M.; Matsukata, M. Olefin Selective Ag-Exchanged X-Type Zeolite Membrane for Propylene/Propane and Ethylene/Ethane Separation. ACS Appl. Mater. Interfaces. 2019, 11(4), 4145–4151. DOI: 10.1021/acsami.8b20151.
  • Buchwald, H.; Thistlethwaite, W. P. Some Cation Exchange Properties of Ammonium 12-Molybdophosphate. J. Inorg. Nucl. Chem. 1958, 5(4), 341–343. DOI: 10.1016/0022-1902(58)80013-5.
  • Polyoxometalate Chemistry From Topology via Self-Assembly to Applications | SpringerLink. https://link.springer.com/book/10.1007/0-306-47625-8 (accessed Aug 1, 2022).
  • Garwick, R. E.; Schreiber, E.; Brennessel, W. W.; McKone, J. R.; Matson, E. M. Surface Ligands Influence the Selectivity of Cation Uptake in Polyoxovanadate–Alkoxide Clusters. J. Mater. Chem. A. 2022, 10(22), 12070–12078. DOI: 10.1039/D2TA01131J.
  • Steck, A.; Yeager, H. L. Water Sorption and Cation-Exchange Selectivity of a Perfluorosulfonate Ion-Exchange Polymer. Anal. Chem. 1980, 52(8), 1215–1218. DOI: 10.1021/ac50058a013.
  • Pennington, L.; Williams, M. Chelating Ion Exchange Resins (Accessed Aug 14, 2022). DOI: 10.1021/ie50594a032.
  • Azarudeen, R. S.; Riswan Ahamed, M. A.; Subha, R.; Burkanudeen, A. R. Heavy and Toxic Metal Ion Removal by a Novel Polymeric Ion-Exchanger: Synthesis, Characterization, Kinetics and Equilibrium Studies. J. Chem. Technol. Biotechnol. 2015, 90(12), 2170–2179. DOI: 10.1002/jctb.4528.
  • Neirinckx, R. D.; Davis, M. A. Potential Column Chromatography for Ionic Ga-68. II: Organic Ion Exchangers as Chromatographic Supports. J. Nucl. Med. 1980, 21(1), 81–83.
  • Dragan, E. S.; Avram, E.; Dinu, M. V. Organic Ion Exchangers as Beads. Synthesis, Characterization and Applications. Polym. Adv. Technol. 2006, 17(7–8), 571–578. DOI: 10.1002/pat.755.
  • Economy, J.; Dominguez, L.; Mangun, C. L. Polymeric Ion-Exchange Fibers. Ind. Eng. Chem. Res. 2002, 41(25), 6436–6442. DOI: 10.1021/ie0204641.
  • Cseri, L.; Topuz, F.; Abdulhamid, M. A.; Alammar, A.; Budd, P. M.; Szekely, G. Electrospun Adsorptive Nanofibrous Membranes from Ion Exchange Polymers to Snare Textile Dyes from Wastewater. Adv. Mater. Technol. 2021, 6(10), 2000955. DOI: 10.1002/admt.202000955.
  • Yu, S.; Li, J.; Dong, J.; Liao, J.; Shen, P.; Liu, C.; Shen, J. Organic Solvent-Resistant and Robust Kevlar Nanofiber-Based Cation-Exchange Membranes for Improved Electrodialysis Performance. ACS Appl. Polym. Mater. 2022, 4(2), 889–898. DOI: 10.1021/acsapm.1c01385.
  • Shabani, I.; Haddadi-Asl, V.; Soleimani, M.; Seyedjafari, E.; Hashemi, S. M. Ion-Exchange Polymer Nanofibers for Enhanced Osteogenic Differentiation of Stem Cells and Ectopic Bone Formation. ACS Appl. Mater. Interfaces. 2014, 6(1), 72–82. DOI: 10.1021/am404500c.
  • Li, B.; Zhang, Y.; Ma, D.; Xing, Z.; Ma, T.; Shi, Z.; Ji, X.; Ma, S. Creation of a New Type of Ion Exchange Material for Rapid, High-Capacity, Reversible and Selective Ion Exchange without Swelling and Entrainment. Chem. Sci. 2016, 7(3), 2138–2144. DOI: 10.1039/C5SC04507J.
  • Liu, Z.-W.; Cao, C.-X.; Han, B.-H. A Cationic Porous Organic Polymer for High-Capacity, Fast, and Selective Capture of Anionic Pollutants. J. Hazard. Mater. 2019, 367, 348–355. DOI: 10.1016/j.jhazmat.2018.12.091.
  • Koo, W.-T.; Kim, Y.; Savagatrup, S.; Yoon, B.; Jeon, I.; Choi, S.-J.; Kim, I.-D.; Swager, T. M. Porous Ion Exchange Polymer Matrix for Ultrasmall Au Nanoparticle-Decorated Carbon Nanotube Chemiresistors. Chem. Mater. 2019, 31(15), 5413–5420. DOI: 10.1021/acs.chemmater.9b00504.
  • Yang, Q.; Li, L.; Lin, C. X.; Gao, X. L.; Zhao, C. H.; Zhang, Q. G.; Zhu, A. M.; Liu, Q. L. Hyperbranched Poly(Arylene Ether Ketone) Anion Exchange Membranes for Fuel Cells. J. Membr. Sci. 2018, 560, 77–86. DOI: 10.1016/j.memsci.2018.05.015.
  • Wang, J.; Zhao, Z.; Gong, F.; Li, S.; Zhang, S. Synthesis of Soluble Poly(Arylene Ether Sulfone) Ionomers with Pendant Quaternary Ammonium Groups for Anion Exchange Membranes. Macromolecules. 2009, 42(22), 8711–8717. DOI: 10.1021/ma901606z.
  • Mandal, M.; Huang, G.; Kohl, P. A. Highly Conductive Anion-Exchange Membranes Based on Cross-Linked Poly(Norbornene): Vinyl Addition Polymerization. ACS Appl. Energy Mater. 2019, 2(4), 2447–2457. DOI: 10.1021/acsaem.8b02051.
  • Mandal, M.; Huang, G.; Kohl, P. A. Anionic Multiblock Copolymer Membrane Based on Vinyl Addition Polymerization of Norbornenes: Applications in Anion-Exchange Membrane Fuel Cells. J. Membr. Sci. 2019, 570–571, 394–402. DOI: 10.1016/j.memsci.2018.10.041.
  • Huang, T.; Zhang, J.; Liu, X.; Xue, J.; Jiang, H.; Ren, Y.; Qiu, X.; Yin, Y.; Jiang, Z.; Guiver, M. D. Highly Cationized and Porous Hyper-Cross-Linked Polymer Nanospheres for Composite Anion Exchange Membranes. ACS Appl. Polym. Mater. 2021, 3(11), 5612–5621. DOI: 10.1021/acsapm.1c00934.
  • McNair, R.; Cseri, L.; Szekely, G.; Dryfe, R. Asymmetric Membrane Capacitive Deionization Using Anion-Exchange Membranes Based on Quaternized Polymer Blends. ACS Appl. Polym. Mater. 2020, 2(7), 2946–2956. DOI: 10.1021/acsapm.0c00432.
  • Yadav, V.; Rathod, N. H.; Kulshrestha, V. Series-Connected Tetracation Partially Cross-Linked Anion Exchange Membranes: Insight Towards Consequences of Alkyl Spacer Length. ACS Appl. Polym. Mater. 2021, 3(7), 3307–3320. DOI: 10.1021/acsapm.1c00171.
  • Liang, P.; Yuan, L.; Yang, X.; Zhou, S.; Huang, X. Coupling Ion-Exchangers with Inexpensive Activated Carbon Fiber Electrodes to Enhance the Performance of Capacitive Deionization Cells for Domestic Wastewater Desalination. Water Res. 2013, 47(7), 2523–2530. DOI: 10.1016/j.watres.2013.02.037.
  • McNair, R.; Szekely, G.; Dryfe, R. A. W.; Ion-Exchange Materials for Membrane Capacitive Deionization. ACS ES&T Water. 2021, 1(2), 217–239. DOI:10.1021/acsestwater.0c00123.
  • Liu, Y.; Pan, L.; Xu, X.; Lu, T.; Sun, Z.; Chua, D. H. C. Enhanced Desalination Efficiency in Modified Membrane Capacitive Deionization by Introducing Ion-Exchange Polymers in Carbon Nanotubes Electrodes. Electrochim. Acta. 2014, 130, 619–624. DOI: 10.1016/j.electacta.2014.03.086.
  • Kim, Y.-J.; Choi, J.-H. Improvement of Desalination Efficiency in Capacitive Deionization Using a Carbon Electrode Coated with an Ion-Exchange Polymer. Water Res. 2010, 44(3), 990–996. DOI: 10.1016/j.watres.2009.10.017.
  • Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M. Review on the Science and Technology of Water Desalination by Capacitive Deionization. Prog. Mater. Sci. 2013, 58(8), 1388–1442. DOI: 10.1016/j.pmatsci.2013.03.005.
  • ALOthman, Z. A.; Inamuddin,; Naushad, M. Recent Developments in the Synthesis, Characterization and Applications of Zirconium(IV) Based Composite Ion Exchangers. J. Inorg. Organomet. Polym. Mater. 2013, 23(2), 257–269. DOI: 10.1007/s10904-012-9797-2.
  • Chithra, P. G.; Raveendran, R.; Beena, B. Parachlorophenol Anchored Tin Antimonate — An Inorgano-Organic Ion-Exchanger Selective Towards Heavy Metals like Bi(III) and Cu(II). Desalination. 2008, 232(1), 20–25. DOI: 10.1016/j.desal.2008.01.006.
  • Chithra, P. G.; Beena, B. O-Chlorophenol Anchored Tin Antimonate: An Ion Exchanger for Separation of Heavy Metals. Indian J. Chem. Technol. March 2008, 15(2), 190–193.
  • Šebesta, F.;. Composite Sorbents of Inorganic Ion-Exchangers and Polyacrylonitrile Binding Matrix. J. Radioanal. Nucl. Chem. 1997, 220(1), 77–88. DOI: 10.1007/BF02035352.
  • Khan, A. A.; Inamuddin, A.; Preparation, M. M. Characterization and Analytical Applications of a New and Novel Electrically Conducting Fibrous Type Polymeric–Inorganic Composite Material: Polypyrrole Th(IV) Phosphate Used as a Cation-Exchanger and Pb(II) Ion-Selective Membrane Electrode. Mater. Res. Bull. 2005, 40(2), 289–305. DOI: 10.1016/j.materresbull.2004.10.014.
  • John, J.; Šebesta, F.; Motl, A. Application of New Inorganic-Organic Composite Absorbers with Polyacrylonitrile Binding Matrix for Separation of Radionuclides from Liquid Radioactive Wastes. Chemical Separation Technologies and Related Methods of Nuclear Waste Management: Applications, Problems, and Research Needs; Choppin, G. R., Khankhasayev, M. K. Eds.; NATO Science Series; Springer: Netherlands, 1999; Vol. Dordrecht, pp. 155–168. DOI:10.1007/978-94-011-4546-6_9
  • Claverie, M.; Garcia, J.; Prevost, T.; Brendlé, J.; Limousy, L. Inorganic and Hybrid (Organic–Inorganic) Lamellar Materials for Heavy Metals and Radionuclides Capture in Energy Wastes Management—A Review. Materials. 2019, 12(9), 1399. DOI: 10.3390/ma12091399.
  • Khan, A. A.; Alam, M. M.; Mohammad, F. Ion-Exchange Kinetics and Electrical Conductivity Studies of Polyaniline Sn(IV) Tungstoarsenate; (SnO2)(WO3)(As2O5)4(Ã/C6H5 Ã/ NH Ã/)2 ×/NH2O: A New Semi-Crystalline ‘Polymericá/inorganic’ Composite Cation-Exchange Material. Electrochim. Acta. 2003, 2003, 10.
  • Mispa, K. J.; Muthulakshmi, R.; Kumar, C. P.; Subramaniam, P.; Murugesan, R. Ion-Exchange Behavior of New and Novel Zirconium(IV)-Based Composite Cation-Exchangers. Polym.-Plast. Technol. Eng. 2017, 56(1), 55–70. DOI: 10.1080/03602559.2016.1211684.
  • Guo, Z.; Shams, M.; Zhu, C.; Shi, Q.; Tian, Y.; Engelhard, M. H.; Du, D.; Chowdhury, I.; Lin, Y. Electrically Switched Ion Exchange Based on Carbon-Polypyrrole Composite Smart Materials for the Removal of ReO4– From Aqueous Solutions. Environ. Sci. Technol. 2019, 53(5), 2612–2617. DOI: 10.1021/acs.est.8b04789.
  • Ahangar, I.; Mir, F. Q. Development of Polyvinyl Alcohol (PVA) Supported Zirconium Tungstate (ZrW/PVA) Composite Ion-Exchange Membrane. Int. J. Hydrog. Energy. 2020, 45(56), 32433–32441. DOI: 10.1016/j.ijhydene.2020.08.216.
  • Faghihian, H.; Iravani, M.; Moayed, M.; Ghannadi-Maragheh, M. A Novel Polyacrylonitrile–Zeolite Nanocomposite to Clean Cs and Sr from Radioactive Waste. Environ. Chem. Lett. 2013, 11(3), 277–282. DOI: 10.1007/s10311-013-0399-1.
  • Pathania, D.; Thakur, M.; Mishra, A. K. Alginate-Zr (IV) Phosphate Nanocomposite Ion Exchanger: Binary Separation of Heavy Metals, Photocatalysis and Antimicrobial Activity. J. Alloys Compd. 2017, 701, 153–162. DOI: 10.1016/j.jallcom.2017.01.112.
  • Gupta, V. K.; Agarwal, S.; Tyagi, I.; Pathania, D.; Rathore, B. S.; Sharma, G. S. Characterization and Analytical Application of Cellulose Acetate-Tin (IV) Molybdate Nanocomposite Ion Exchanger: Binary Separation of Heavy Metal Ions and Antimicrobial Activity. Ionics. 2015, 21(7), 2069–2078. DOI: 10.1007/s11581-015-1368-4.
  • Khaydarov, R. A.; Khaydarov, R. R.; Gapurova, O. Water Purification from Metal Ions Using Carbon Nanoparticle-Conjugated Polymer Nanocomposites. Water Res. 2010, 44(6), 1927–1933. DOI: 10.1016/j.watres.2009.11.041.
  • Kaur, K.; Jindal, R. Synergistic Effect of Organic-Inorganic Hybrid Nanocomposite Ion Exchanger on Photocatalytic Degradation of Rhodamine-B Dye and Heavy Metal Ion Removal from Industrial Effluents. J. Environ. Chem. Eng. 2018, 6(6), 7091–7101. DOI: 10.1016/j.jece.2018.09.065.
  • Kaur, K.; Jindal, R. Comparative Study on the Behaviour of Chitosan-Gelatin Based Hydrogel and Nanocomposite Ion Exchanger Synthesized under Microwave Conditions Towards Photocatalytic Removal of Cationic Dyes. Carbohydr. Polym. 2019, 207, 398–410. DOI: 10.1016/j.carbpol.2018.12.002.
  • Sharma, G.; Kumar, A.; Naushad, M.; Pathania, D.; Sillanpää, M. Sillanpää, M. Polyacrylamide@Zr(IV) Vanadophosphate Nanocomposite: Ion Exchange Properties, Antibacterial Activity, and Photocatalytic Behavior. J. Ind. Eng. Chem. 2016, 33, 201–208. DOI: 10.1016/j.jiec.2015.10.011.
  • Pathania, D.;.; Sharma, T. R.; Thakur, R.G. Pectin @ Zirconium (IV) Silicophosphate Nanocomposite Ion Exchanger: Photo Catalysis, Heavy Metal Separation and Antibacterial Activity. Chem. Eng. J. 2015, 267, 235–244, 10.1016/j.cej.2015.01.004.
  • Sarkar, S.; Chatterjee, P. K.; Cumbal, L. H.; SenGupta, A. K. Hybrid Ion Exchanger Supported Nanocomposites: Sorption and Sensing for Environmental Applications. Chem. Eng. J. 2011, 166(3), 923–931. DOI: 10.1016/j.cej.2010.11.075.
  • Lin, R.-Y.; Chen, B.-S.; Chen, G.-L.; Wu, J.-Y.; Chiu, H.-C.; Suen, S.-Y. Preparation of Porous PMMA/Na+–Montmorillonite Cation-Exchange Membranes for Cationic Dye Adsorption. J. Membr. Sci. 2009, 326(1), 117–129. DOI: 10.1016/j.memsci.2008.09.038.
  • Urbano, B.; Rivas, B. L. Poly(Sodium 4-Styrene Sulfonate) and Poly(2-Acrylamido Glycolic Acid) Polymer–Clay Ion Exchange Resins with Enhanced Mechanical Properties and Metal Ion Retention. Polym. Int. 2012, 61(1), 23–29. DOI: 10.1002/pi.3178.
  • Advancing the conductivity-permselectivity Tradeoff of Electrodialysis ion-exchange Membranes with Sulfonated CNT Nanocomposites - ScienceDirect https://www.sciencedirect.com/science/article/abs/pii/S0376738820308371 (accessed Jul 30, 2022).
  • Urbano, B. F.; Rivas, B. L.; Martinez, F.; Alexandratos, S. D. Water-Insoluble Polymer–Clay Nanocomposite Ion Exchange Resin Based on N-Methyl-d-Glucamine Ligand Groups for Arsenic Removal. React. Funct. Polym. 2012, 72(9), 642–649. DOI: 10.1016/j.reactfunctpolym.2012.06.008.
  • War, J. A.; Chisti, H.-T.-N. Potato Starch-Sodium Alginate-Zr (IV) Phosphate Bio-Nanocomposite Ion Exchanger: Synthesis, Characterization and Environmental Application. Curr. Anal. Chem. 2022, 18(4), 456–465. DOI: 10.2174/1573411016999200729121527.
  • Pan, S.; Shen, J.; Deng, Z.; Zhang, X.; Pan, B. Metastable Nano-Zirconium Phosphate inside Gel-Type Ion Exchanger for Enhanced Removal of Heavy Metals. J. Hazard. Mater. 2022, 423, 127158. DOI: 10.1016/j.jhazmat.2021.127158.
  • Awual, R., Md; Yaita, T.; Kobayashi, T.; Shiwaku, H.; Suzuki, S. Improving Cesium Removal to Clean-up the Contaminated Water Using Modified Conjugate Material. J. Environ. Chem. Eng. 2020, 8(2), 103684. DOI: 10.1016/j.jece.2020.103684.
  • Kamel, R. M.; Shahat, A.; Hegazy, W. H.; Khodier, E. M.; Awual, R., Md. Efficient Toxic Nitrite Monitoring and Removal from Aqueous Media with Ligand Based Conjugate Materials. J. Mol. Liq. 2019, 285, 20–26. DOI: 10.1016/j.molliq.2019.04.060.
  • Awual, M. R.;. Novel Ligand Functionalized Composite Material for Efficient Copper(II) Capturing from Wastewater Sample. Compos. Part B Eng. 2019, 172, 387–396. DOI: 10.1016/j.compositesb.2019.05.103.
  • Awual, M.; Rahman, R.; M, I. M.; Yaita, T.; Khaleque, A., Md; Ferdows, M. PH Dependent Cu(II) and Pd(II) Ions Detection and Removal from Aqueous Media by an Efficient Mesoporous Adsorbent. Chem. Eng. J. 2014, 236, 100–109. DOI: 10.1016/j.cej.2013.09.083.
  • Awual, M. R.;. New Type Mesoporous Conjugate Material for Selective Optical Copper(II) Ions Monitoring & Removal from Polluted Waters. Chem. Eng. J. 2017, 307, 85–94. DOI: 10.1016/j.cej.2016.07.110.
  • Awual, M. R.;. Innovative Composite Material for Efficient and Highly Selective Pb(II) Ion Capturing from Wastewater. J. Mol. Liq. 2019, 284, 502–510. DOI: 10.1016/j.molliq.2019.03.157.
  • Awual, M. R.;. Novel Conjugated Hybrid Material for Efficient Lead(II) Capturing from Contaminated Wastewater. Mater. Sci. Eng. C. 2019, 101, 686–695. DOI: 10.1016/j.msec.2019.04.015.
  • Zhang, S.; Shao, Y.; Liu, J.; Aksay, I. A.; Lin, Y. Graphene–Polypyrrole Nanocomposite as a Highly Efficient and Low Cost Electrically Switched Ion Exchanger for Removing ClO4– From Wastewater. ACS Appl. Mater. Interfaces. 2011, 3(9), 3633–3637. DOI: 10.1021/am200839m.
  • Huyan, C.; Ding, S.; Lyu, Z.; Engelhard, M. H.; Tian, Y.; Du, D.; Liu, D.; Lin, Y. Selective Removal of Perfluorobutyric Acid Using an Electroactive Ion Exchanger Based on Polypyrrole@Iron Oxide on Carbon Cloth. ACS Appl. Mater. Interfaces. 2021, 13(41), 48500–48507. DOI: 10.1021/acsami.1c09374.
  • Lu, Y.; Pan, X.; Li, N.; Hu, Z.; Chen, S. Improved Performance of Quaternized Poly(Arylene Ether Ketone)s/Graphitic Carbon Nitride Nanosheets Composite Anion Exchange Membrane for Fuel Cell Applications. Appl. Surf. Sci. 2020, 503, 144071. DOI: 10.1016/j.apsusc.2019.144071.
  • Zelovich, T.; Tuckerman, M. E. Water Layering Affects Hydroxide Diffusion in Functionalized Nanoconfined Environments. J. Phys. Chem. Lett. 2020, 11(13), 5087–5091. DOI: 10.1021/acs.jpclett.0c01141.
  • Shahinpoor, M.;. Ion-Exchange Polymer-Metal Composites as Biomimetic Sensors and Actuators. In Polymer Sensors and Actuators; Osada, Y., De Rossi, D. E., Eds.; Macromolecular Systems — Materials Approach; Springer: Berlin, Heidelberg, 2000; pp 325–359. DOI: 10.1007/978-3-662-04068-3_12.
  • Guo, D.-J.; Liu, R.; Cheng, Y.; Zhang, H.; Zhou, L.-M.; Fang, S.-M.; Elliott, W. H.; Tan, W. Reverse Adhesion of a Gecko-Inspired Synthetic Adhesive Switched by an Ion-Exchange Polymer–Metal Composite Actuator. ACS Appl. Mater. Interfaces. 2015, 7(9), 5480–5487. DOI: 10.1021/am509163m.
  • Dai, W.; Shen, Y.; Li, Z.; Yu, L.; Xi, J.; Qiu, X. SPEEK/Graphene Oxide Nanocomposite Membranes with Superior Cyclability for Highly Efficient Vanadium Redox Flow Battery. J. Mater. Chem. A. 2014, 2(31), 12423–12432. DOI: 10.1039/C4TA02124J.
  • Seepana, M. M.; Pandey, J.; Shukla, A. Design and Synthesis of Highly Stable Poly(Tetrafluoroethylene)-Zirconium Phosphate (PTFE-ZrP) Ion-Exchange Membrane for Vanadium Redox Flow Battery (VRFB). Ionics. 2017, 23(6), 1471–1480. DOI: 10.1007/s11581-016-1967-8.
  • Divya, K.; Rana, D.; Sri Abirami Saraswathi, M. S.; Nagendran, A. Custom-Made Sulfonated Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) Nanocomposite Membranes for Vanadium Redox Flow Battery Applications. Polym. Test. 2020, 90, 106685. DOI: 10.1016/j.polymertesting.2020.106685.
  • Zhang, Y.; Zou, L.; Wimalasiri, Y.; Lee, J.-Y.; Chun, Y. Reduced Graphene Oxide/Polyaniline Conductive Anion Exchange Membranes in Capacitive Deionisation Process. Electrochim. Acta. 2015, 182, 383–390. DOI: 10.1016/j.electacta.2015.09.128.
  • McNair, R.; Kumar, S.; Wonanke, A. D. D.; Addicoat, M. A.; Dryfe, R. A. W.; Szekely, G. Ionic Covalent Organic Nanosheet (Icon)–quaternized Polybenzimidazole Nanocomposite Anion-Exchange Membranes to Enhance the Performance of Membrane Capacitive Deionization. Desalination. 2022, 533, 115777. DOI: 10.1016/j.desal.2022.115777.
  • Savas, L. A.; Hancer, M. Montmorillonite Reinforced Polymer Nanocomposite Antibacterial Film. Appl. Clay Sci. 2015, 108, 40–44. DOI: 10.1016/j.clay.2015.02.021.
  • Toda, I.; Tsuruoka, T.; Matsui, J.; Murashima, T.; Nawafune, H.; Akamatsu, K. In Situ Synthesis of Metal/Polymer Nanocomposite Thin Films on Glass Substrates by Using Highly Cross-Linked Polymer Matrices with Tailorable Ion Exchange Capabilities. RSC Adv. 2013, 4(9), 4723–4726. DOI: 10.1039/C3RA46166A.
  • Gupta, V. K.; Saleh, T. A.; Pathania, D.; Rathore, B. S.; Sharma, G. A Cellulose Acetate Based Nanocomposite for Photocatalytic Degradation of Methylene Blue Dye under Solar Light. Ionics. 2015, 21(6), 1787–1793. DOI: 10.1007/s11581-014-1323-9.
  • Sharma, G.; Thakur, B.; Naushad, M.; Al-Muhtaseb, A. H.; Kumar, A.; Sillanpaa, M.; Mola, G. T. Fabrication and Characterization of Sodium Dodecyl Sulphate@ironsilicophosphate Nanocomposite: Ion Exchange Properties and Selectivity for Binary Metal Ions. Mater. Chem. Phys. 2017, 193, 129–139. DOI: 10.1016/j.matchemphys.2017.02.010.
  • Seddighi, H.; Khodadadi Darban, A.; Khanchi, A.; Fasihi, J.; Koleini, J. LDH(Mg/Al:2)@montmorillonite Nanocomposite as a Novel Anion-Exchanger to Adsorb Uranyl Ion from Carbonate-Containing Solutions. J. Radioanal. Nucl. Chem. 2017, 314(1), 415–427. DOI: 10.1007/s10967-017-5387-7.
  • Pang, H.; Wu, Y.; Wang, X.; Hu, B.; Wang, X.; Recent Advances in Composites of Graphene and Layered Double Hydroxides for Water Remediation: A Review. Chem. Asian. J. 2019, 1415, 2542–2552. DOI:10.1002/asia.201900493.
  • Kaushal, S.; Sharma, P. K.; Mittal, S. K.; Singh, P. A Novel Zinc Oxide–Zirconium (IV) Phosphate Nanocomposite as Antibacterial Material with Enhanced Ion Exchange Properties. Colloids Interface Sci. Commun. 2015, 7, 1–6. DOI: 10.1016/j.colcom.2015.11.003.
  • Soliman, E. M.; Ahmed, S. A.; Fadl, A. A. Microwave-Enforced Green Synthesis of Novel Magnetic Nano Composite Adsorbents Based on Functionalization of Wood Sawdust for Fast Removal of Calcium Hardness from Water Samples. Water Environ. Res. 2020, 92(12), 2112–2128. DOI: 10.1002/wer.1383.
  • Sharma, G.; Pathania, D.; Naushad, M.; Kothiyal, N. C. Fabrication, Characterization and Antimicrobial Activity of Polyaniline Th(IV) Tungstomolybdophosphate Nanocomposite Material: Efficient Removal of Toxic Metal Ions from Water. Chem. Eng. J. 2014, 251, 413–421. DOI: 10.1016/j.cej.2014.04.074.
  • Kodispathi, T.; Jacinth Mispa, K. Fabrication, Characterization, Ion-Exchange Studies and Binary Separation of Polyaniline/Ti(IV) Iodotungstate Composite Ion-Exchanger for the Treatment of Water Pollutants. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100555. DOI: 10.1016/j.enmm.2021.100555.
  • Attallah, M. F.; Hassan, H. S.; Youssef, M. A. Synthesis and Sorption Potential Study of Al2O3ZrO2CeO2 Composite Material for Removal of Some Radionuclides from Radioactive Waste Effluent. Appl. Radiat. Isot. 2019, 147, 40–47. DOI: 10.1016/j.apradiso.2019.01.015.
  • Sheha, R. R.;. Synthesis and Characterization of Magnetic Hexacyanoferrate (II) Polymeric Nanocomposite for Separation of Cesium from Radioactive Waste Solutions. J. Colloid Interface Sci. 2012, 388(1), 21–30. DOI: 10.1016/j.jcis.2012.08.042.
  • Kamble, P.; Sinharoy, P.; Pahan, S.; Neogy, S.; Ananthanarayanan, A.; Banerjee, D.; Sugilal, G. Synthesis and Characterization of Chitosan-Sodium Titanate Nanocomposite Beads for Separation of Radionuclides from Aqueous Radioactive Waste. J. Radioanal. Nucl. Chem. 2021, 327(2), 691–698. DOI: 10.1007/s10967-020-07548-0.
  • Kaur, B.; Srivastava, R.; Satpati, B. Ultratrace Detection of Toxic Heavy Metal Ions Found in Water Bodies Using Hydroxyapatite Supported Nanocrystalline ZSM-5 Modified Electrodes. New J. Chem. 2015, 39(7), 5137–5149. DOI: 10.1039/C4NJ02369B.
  • Amjadi, M.; Rowshanzamir, S.; Peighambardoust, S. J.; Hosseini, M. G.; Eikani, M. H. Investigation of Physical Properties and Cell Performance of Nafion/TiO2 Nanocomposite Membranes for High Temperature PEM Fuel Cells. Int. J. Hydrog. Energy. 2010, 35(17), 9252–9260. DOI: 10.1016/j.ijhydene.2010.01.005.
  • Honma, I.; Nomura, S.; Nakajima, H. Protonic Conducting Organic/Inorganic Nanocomposites for Polymer Electrolyte Membrane. J. Membr. Sci. 2001, 185(1), 83–94. DOI: 10.1016/S0376-7388(00)00636-0.
  • Zhang, S.; Tanioka, A.; Matsumoto, H. Nanofibers as Novel Platform for High-Functional Ion Exchangers. J. Chem. Technol. Biotechnol. 2018, 93(10), 2791–2803. DOI: 10.1002/jctb.5685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.