391
Views
2
CrossRef citations to date
0
Altmetric
Review

Salting-out Effect on the Separation and Purification of Acetic Esters: Salting-out Agents, Theory, and Applications

ORCID Icon, &
Pages 61-81 | Received 18 Apr 2022, Accepted 09 Dec 2022, Published online: 26 Dec 2022

References

  • Doble, M.; Kruthiventi, A. K. . Green Chemistry and Engineering Mukesh , Doble, Anil Kumar , Kruthiventi (Cambridge, MA: Academic Press) 2007 Alternate Solvents , 93–104 978-0-12-372532-5 https://www.sciencedirect.com/book/9780123725325/green-chemistry-and-engineering#book-description . DOI: 10.1016/b978-012372532-5/50006-7. English
  • Rass-Hansen, J.; Falsig, H.; Jørgensen, B.; Christensen, C. H. Bioethanol: Fuel or Feedstock? J. Chem. Technol. Biotechnol. 2007, 82(4), 329–333. DOI: 10.1002/jctb.1665.
  • Bankar, S. B.; Survase, S. A.; Ojamo, H.; Granström, T. Biobutanol: The Outlook of an Academic and Industrialist. RSC Adv. 2013, 3(47), 24734–24757. DOI: 10.1039/c3ra43011a.
  • Xie, S.; Li, Z.; Zhu, G.; Yi, C. One-Pot Reaction-Separation Process to Produce Jet Fuel. Energy Convers. Manag. X 2022, 13, 100155. DOI: 10.1016/J.ECMX.2021.100155.
  • Vidra, A.; Németh, Á. Bio-Produced Acetic Acid: A Review. Period. Polytech. Chem. Eng. 2018, 62(3), 245–256. DOI:10.3311/PPCH.11004.
  • Tang, Y.-T.; Chen, Y.-W.; Huang, H.-P.; Yu, -C.-C.; Hung, S.-B.; Lee, M.-J. Design of Reactive Distillations for Acetic Acid Esterification. AIChE J. 2005, 51(6), 1683–1699. DOI: 10.1002/AIC.10519.
  • Yang, A.; Zou, H.; Chien, I. L.; Wang, D.; Wei, S.; Ren, J.; Shen, W. Optimal Design and Effective Control of Triple-Column Extractive Distillation for Separating Ethyl Acetate/Ethanol/Water with Multiazeotrope. Ind. Eng. Chem. Res. 2019, 58(17), 7265–7283. DOI: 10.1021/acs.iecr.9b00466.
  • Berg, L.; An-Iyeh, A. I.; Ratanapupech, P. The Recovery of Ethyl Acetate by Extractive Distillation. Chem. Eng. Commun. 1985, 39(1–6), 193–199. DOI: 10.1080/00986448508911670.
  • Calvar, N.; González, B.; Dominguez, A. Esterification of Acetic Acid with Ethanol: Reaction Kinetics and Operation in a Packed Bed Reactive Distillation Column. Chem. Eng. Process. Process. Intensif. 2007, 46(12), 1317–1323. DOI: 10.1016/J.CEP.2006.10.007.
  • Berg, L.; Separation of Ethyl Acetate from Ethanol by Azeotropic Distillation. U.S. Patent No.US5993610A, 1999.
  • Toth, A. J.;. Comprehensive Evaluation and Comparison of Advanced Separation Methods on the Separation of Ethyl Acetate-Ethanol-Water Highly Non-Ideal Mixture. Sep. Purif. Technol. 2019, 224, 490–508. DOI: 10.1016/J.SEPPUR.2019.05.051.
  • Virdis, T.; Danilov, V.; Baron, G. V.; Denayer, J. F. M. Nonideality in the Adsorption of Ethanol/Ethyl Acetate/Water Mixtures on ZIF-8 Metal Organic Framework. Ind. Eng. Chem. Res. 2018, 57(20), 7040–7047. DOI: 10.1021/ACS.IECR.8B00719.
  • Dhanalakshmi, J.; Sai, P. S. T.; Balakrishnan, A. R. Effect of Bivalent Cation Inorganic Salts on Isobaric Vapor-Liquid Equilibrium of Methyl Acetate-Methanol System. Fluid Phase Equilib. 2014, 379, 112–119. DOI: 10.1016/j.fluid.2014.07.005.
  • Yang, D.; Lou, H.; Pang, Y.; Qiu, X. Separation of Methyl Acetate-Methanol-Water by Extraction with Composite Salts. J. Chem. Eng. Chinese Univ. 2007, 21(2), 239–244
  • Al-Sahhaf, T. A.; Kapetanovic, E. Salt Effects of Lithium Chloride, Sodium Bromide, or Potassium Iodide on Liquid-Liquid Equilibrium in the System Water + 1-Butanol. J. Chem. Eng. Data 1997, 42(1), 74–77. DOI: 10.1021/je960234r.
  • Jurkiewicz, K. Phase Equilibrium in the System of Water, Alcohol or Ketone, and Sodium Chloride. Fluid Phase Equilib. 2007, 251(1), 24–28. DOI: 10.1016/j.fluid.2006.10.019.
  • Matkovich, C. E.; Christian, G. D. Salting-Out of Acetone from Water-Basis of a New Solvent Extraction System. Anal. Chem. 1973, 45(11), 1915–1921. DOI: 10.1021/ac60333a023.
  • Xie, S.; Qiu, X.; Yi, C. Separation of a Biofuel: Recovery of Biobutanol by Salting-Out and Distillation. Chem. Eng. Technol. 2015, 38(12), 2181–2188. DOI: 10.1002/ceat.201500140.
  • Fu, C.; Li, Z.; Song, W.; Yi, C.; Xie, S. A New Process for Separating Biofuel Based on the Salt + 1-Butanol + Water System. Fuel 2020, 278, 118402. DOI: 10.1016/j.fuel.2020.118402.
  • Xie, S.; Song, W.; Yi, C.; Qiu, X. Salting-out Extraction Systems of Ethanol and Water Induced by High-Solubility Inorganic Electrolytes. J. Ind. Eng. Chem. 2017, 56, 145–150. DOI: 10.1016/j.jiec.2017.07.006.
  • Xie, S.; Yi, C.; Qiu, X. Salting-out Effect of Potassium Pyrophosphate (K4P2O7) on the Separation of Biobutanol from an Aqueous Solution. J. Chem. Technol. Biotechnol. 2016, 91(6), 1860–1867. DOI: 10.1002/jctb.4779.
  • Jaques, D.; Furter, W. F. Salt Effects in Vapor-Liquid Equilibrium: Testing the Thermodynamic Consistency of Ethanol-Water Saturated with Inorganic Salts. AIChE J. 1972, 18(2), 343–346. DOI: 10.1002/AIC.690180216.
  • Fu, C.; Li, Z.; Sun, Z.; Xie, S. A Review of Salting-out Effect and Sugaring-out Effect: Driving Forces for Novel Liquid-Liquid Extraction of Biofuels and Biochemicals. Front. Chem. Sci. Eng. 2020, 15(4), 854–871. DOI: 10.1007/s11705-020-1980-3.
  • Yang, D.; Hu, B.; Qiu, X.; Lou, H. Study on Purification of N-Propyl Acetate by Extraction. Chem. Eng. 2006, 34(2), 75–78
  • Yang, D.; Huang, J.; Chen, Y.; Lou, H.; Qiu, X. Application of Scaled Particle Theory in Extraction with Salt of Methyl Acetate/methanol/water System. CIESC J. 2010, 61(6), 1475–1481
  • Xie, S.; Song, W.; Fu, C.; Yi, C.; Qiu, X. Separation of Acetone: From a Water Miscible System to an Efficient Aqueous Two-Phase System. Sep. Purif. Technol. 2018, 192, 55–61. DOI: 10.1016/j.seppur.2017.09.056.
  • Xie, S.; Qiu, X.; Ji, W.; Yi, C. Salting-out of 1,3-Propanediol from Aqueous Solutions by Inorganic Electrolytes. J. Chem. Technol. Biotechnol. 2016, 91(11), 2793–2801. DOI: 10.1002/jctb.4886.
  • Xie, S.; Zhang, Y.; Zhou, Y.; Wang, Z.; Yi, C.; Qiu, X. Salting-out of Bio-Based 2,3-Butanediol from Aqueous Solutions. J. Chem. Technol. Biotechnol. 2017, 92(1), 122–132. DOI: 10.1002/jctb.4999.
  • Gross, P. M. The “Salting Out” of Non-Electrolytes from Aqueous Solutions. Chem. Rev. 1933, 13(1), 91–101. DOI: 10.1021/cr60044a007.
  • Song, W.; Venimadhavan, G.; Jason, M. M.; Michael, F. M.; Doherty, A.; F, M. Measurement of Residue Curve Maps and Heterogeneous Kinetics in Methyl Acetate Synthesis. Ind. Eng. Chem. Res. 1998, 37(5), 1917–1928. DOI: 10.1021/IE9708790.
  • Pöpken, T.; L. Götze, A.; Gmehling, J. Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis. Ind. Eng. Chem. Res. 2000, 39(7), 2601–2611. DOI: 10.1021/IE000063Q.
  • Köhler, T.; Windt, O.; Martina, B. Method for Producing Polyvinyl Alcohol. European Patent no. EP3077424A1, 2013.
  • Šegatin, N.; Klofutar, C. Salting-out of Some Alkyl Acetates in Aqueous Sodium Chloride Solutions. Monatshefte fur Chemie. 2000, 131(2), 131–144. DOI: 10.1007/s007060050014.
  • Meissner, H. P.; Stokes, C. A.; Hunter, C. M.; Morrow, G. M. Solvent Dehydration by Salting Out: Continuous Countercurrent Dehydration. Ind. Eng. Chem. 1944, 36(10), 917–921. DOI: 10.1021/ie50418a011.
  • Hu, B.;. Separation of Methyl Acetate - Methanol - Water System by Compound Repulsive Extraction. Guangdong Technol. 2006, (160), 51–52. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2006&filename=GDKJ200610029&uniplatform=NZKPT&v=GBb9NXyEnLKz9WhSEzNEK-i4s4tbgWVmo8x96opDvSE8rWNGMeHwFIFuXINM4W2H
  • Ge, L.; Shang, H.; Peng, L.; Zheng, X. New Techniques of Refining High-Purity Methyl Acetate. Hebei J. Ind. Sci. Technol. 2007, 24(1), 19–20
  • Xie, S.; Yi, C.; Qiu, X. Energy-Saving Recovery of Acetone, Butanol, and Ethanol from a Prefractionator by the Salting-out Method. J. Chem. Eng. Data 2013, 58(11), 3297–3303. DOI: 10.1021/je400740z.
  • Xie, S.; Yi, C.; Qiu, X. Salting-out of Acetone, 1-Butanol, and Ethanol from Dilute Aqueous Solutions. AIChE J. 2015, 61(10), 3470–3478. DOI: 10.1002/aic.14872.
  • Fu, C.; Li, Z.; Song, W.; Yi, C.; Xie, S. A New Process for Separating Biofuel Based on the Salt + 1-Butanol + Water System. Fuel 2020, 278, 118402. DOI: 10.1016/j.fuel.2020.118402.
  • Fu, C.; Song, W.; Yi, C.; Xie, S. Creating Efficient Novel Aqueous Two-Phase Systems: Salting-out Effect and High Solubility of Salt. Fluid Phase Equilib. 2019, 490, 77–85. DOI: 10.1016/j.fluid.2019.03.002.
  • Fu, C.; Xie, S. Salts and 1-Propanol Induced Aqueous Two-Phase Systems: Phase Separation and Application. J. Chem. Technol. Biotechnol. 2019, 94(7), 2372–2381. DOI: 10.1002/jctb.6036.
  • Zeng, Y.; Chen, X.; Guo, C.; Zhao, S.; Zheng, H.; Wang, L. Measurement and Correlation of Liquid–Liquid Equilibrium Data for Water + Methanol + Methyl Acetate + Potassium Acetate. Fluid Phase Equilib. 2013, 354, 319–325. DOI: 10.1016/J.FLUID.2013.06.029.
  • Chen, X.; Gao, X.; Zheng, H.; Zhao, S.; Wang, L. Salting Effect on the Liquid–Liquid Equilibrium for the Ternary System Water + Methanol + Methyl Acetate at 283.15 K. Fluid Phase Equilib. 2012, 313, 102–106. DOI: 10.1016/J.FLUID.2011.09.025.
  • Zhang, X. H.; Liu, Q. L.; Xiong, Y.; Zhu, A. M.; Chen, Y.; Zhang, Q. G. Pervaporation Dehydration of Ethyl Acetate/Ethanol/Water Azeotrope Using Chitosan/Poly (Vinyl Pyrrolidone) Blend Membranes. J. Memb. Sci. 2009, 327(1–2), 274–280. DOI: 10.1016/j.memsci.2008.11.034.
  • Berg, L.; Yeh, A. I. The Breaking of Ternary Acetate-Alcohol-Water Azeotropes by Extractive Distillation. Chem. Eng. Commun. 2007, 48(1–3), 93–101. DOI: 10.1080/00986448608911779.
  • Dhanalakshmi, J.; Sai, P. S. T.; Balakrishnan, A. R. Effect of Inorganic Salts on the Isobaric Vapor–Liquid Equilibrium of the Ethyl Acetate–Ethanol System. J. Chem. Eng. Data 2013, 58(3), 560–569. DOI: 10.1021/JE300886K.
  • Qiu, X.; Che, F.; Yang, Z.; Chen, H. Application of Salting-out Effect in Acetates Purification. Guangdong Chem. Eng. 1994, (1), 23–26. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD9495&filename=GDHG199401008&uniplatform=NZKPT&v=rz37aJ1NQQ6BZEH5BgCWheB_aRNB2JGSJM7CagmBR6eiFy6ueG053WNn-mQRSjsx
  • Lin, H. M.; Yeh, C. E.; Hong, G. B.; Lee, M. J. Enhancement of Liquid Phase Splitting of Water + Ethanol + Ethyl Acetate Mixtures in the Presence of a Hydrophilic Agent or an Electrolyte Substance. Fluid Phase Equilib. 2005, 237(1–2), 21–30. DOI: 10.1016/J.FLUID.2005.08.009.
  • Pai, M. U.; Rao, K. M. Salt Effect on Liquid-Liquid Equilibria in the Ethyl Acetate-Ethyl Alcohol-Water System. J. Chem. Eng. Data. 1966, 11(3), 353–356. DOI: 10.1021/JE60030A018/ASSET/JE60030A018.FP.PNG_V03.
  • Hasseine, A.; Kabouche, A.; Meniaic, A. H.; Korichi, M. Salting Effect of NaCl and KCl on the Liquid–Liquid Equilibria of Water + Ethyl Acetate + Ethanol System and Interaction Parameters Estimation Using the Genetic Algorithm. Desalin. Water Treat. 2012, 29(1–3), 47–55. DOI: 10.5004/DWT.2011.1621.
  • Qiu, X.; Yang, D.; Yang, Z.; Chen, H. Preliminary Study on the Process of Exclusion Extraction and Its Application. Chem. Eng. 1999, 27(4), 11–13. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD9899&filename=IMIY904.001&uniplatform=NZKPT&v=moSe0pxeIpZCuL1Lf4VOV91wZ6DRgRHfiZPjM18KxkpIVyclLQbvJP0ZM4KCuQ12.
  • Qiu, X.; Cai, J.; Xu, Q.; Chen, H. The Study of a New Method to Purify Ethyl Acetate. CHEMECAL Eng. (CHINA) 1997, 25(1), 41–44. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD9697&filename=IMIY701.008&uniplatform=NZKPT&v=6bN94Mmjr2AzK_WHk1yYFNA5I6mMQNboBVxCHXyIBDizBaRE36YglJ4gPJum3REy
  • Huang, Y.-S.; Sundmacher, K. Kinetics Study of Propyl Acetate Synthesis Reaction Catalyzed by Amberlyst 15. Int. J. Chem. Kinet. 2007, 39(5), 245–253. DOI: 10.1002/KIN.20236.
  • Serafimov, L. A.; Pisarenko, Y. A.; Kulov, N. N. Coupling Chemical Reaction with Distillation: Thermodynamic Analysis and Practical Applications. Chem. Eng. Sci. 1999, 54(10), 1383–1388. DOI: 10.1016/S0009-2509(99)00051-2.
  • Taylor, R.; Krishna, R. Modelling Reactive Distillation. Chem. Eng. Sci. 2000, 55(22), 5183–5229. DOI: 10.1016/S0009-2509(00)00120-2.
  • Huang, Y. S.; Sundmacher, K.; Tulashie, S.; Schlünder, E. U. Theoretical and Experimental Study on Residue Curve Maps of Propyl Acetate Synthesis Reaction. Chem. Eng. Sci. 2005, 60(12), 3363–3371. DOI: 10.1016/J.CES.2005.01.023.
  • Toikka, A.; Toikka, M. Phase Transitions and Azeotropic Properties of Acetic Acid–n-Propanol–Water–n-Propyl Acetate System. Fluid Phase Equilib. 2006, 250(1–2), 93–98. DOI: 10.1016/J.FLUID.2006.10.011.
  • Propyl acetate | Sigma-Aldrich https://www.sigmaaldrich.com/US/en/search/propyl-acetate?focus=products&page=1&perPage=30&sort=relevance&term=Propylacetate&type=product (accessed Nov 4, 2021).
  • Yi, C.; Xie, S.; Qiu, X. Salting-out Effect of Dipotassium Hydrogen Phosphate on the Recovery of Acetone, Butanol, and Ethanol from a Prefractionator. J. Chem. Eng. Data 2014, 59(5), 1507–1514. DOI: 10.1021/je401060m.
  • Chen, Y.; Qiu, X.; Lou, H.; Yang, D.; Ouyang, X. The Application of Scaled Particle Theory in Extraction with Salt Used for Separation of N-Propyl Acetate/1-Propanol /Water System. J. Chem. Eng. Chinese Univ. 2009, 23(2), 216–222
  • Aniya, V.; Singh, A.; De, D.; Satyavathi, B. An Energy Efficient Route for the Dehydration of 2-Methylpropan-2-Ol: Experimental Investigation, Modeling and Process Optimization. Sep. Purif. Technol. 2015, 156, 738–753. DOI: 10.1016/J.SEPPUR.2015.10.072.
  • Zeng, L.; Li, Z. A New Process for Fuel Ethanol Dehydration Based on Modeling the Phase Equilibria of the Anhydrous MgCl2 + Ethanol + Water System. AIChE J. 2015, 61(2), 664–676. DOI: 10.1002/AIC.14685.
  • Philip, J. C.;. LXVII.—Influence of Non-Electrolytes and Electrolytes on the Solubility of Sparingly Soluble Gases in Water. The Question of Hydrates in Solution. J. Chem. Soc. Trans. 1907, 91, 711–717. DOI:10.1039/CT9079100711.
  • Xie, W.; Zheng, Z.; Tang, M.; Li, D.; Shiu, W. Y.; Mackay, D. Solubilities and Activity Coefficients of Chlorobenzenes and Chlorophenols in Aqueous Salt Solutions. J. Chem. Eng. Data 2002, 39(3), 568–571. DOI: 10.1021/JE00015A038.
  • Debye, V. P.; McAulay, J. The Electric Field of Ions and the Action of Neutral Salts. Phys. Zeitschrift 1925, 26. 22–29. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=2139131
  • Ebrahimi, N.; Farahbod, B.; Sadeghi, R. Salting-in and Salting-out Effects of Organic and Inorganic Ammonium Salts on the Aqueous Polymer Solutions. J. Chem. Thermodyn. 2018, 123, 86–98. DOI: 10.1016/J.JCT.2018.03.030.
  • Pierotti, R. A.;. A Scaled Particle Theory of Aqueous and Nonaqueous Solutions. Chem. Rev. 2002, 76(6), 717–726. DOI: 10.1021/CR60304A002.
  • Pitzer, K. S.;. Electrolyte Theory - Improvements since Debye and Hueckel. Acc. Chem. Res. 2002, 10(10), 371–377. DOI: 10.1021/AR50118A004.
  • Qiao, C. Z.; Zhao, S. L.; Liu, H. L.; Dong, W. Augmented Scaled Particle Theory. J. Phys. Chem. B. 2020, 124(7), 1207–1217. DOI: 10.1021/ACS.JPCB.9B09690.
  • Sen, U.;. Study of Electrolytic Solution Process Using the Scaled-Particle Theory. 2. The Standard Entropy of Solvation. J. Am. Chem. Soc. 1980, 102(7), 2181–2188. DOI: 10.1021/ja00527a006.
  • Wang, F.; Ye, J.; Zhang, W. Studies on the Theory of Solvation Thermodynamics(Ⅴ)-A Theoretical Calculation of Solubility Product for AgCl and AgBrO 3 in Mixed Solvents Containing Wate. Chem. J. Chinese Univ. 1992, 13(10), 1283–1286. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD9093&filename=GDXH199210027&uniplatform=NZKPT&v=iJloCx4ReDiOfe2f1zadss9WCnT-hdtxKhMjuXrmdNpZAx4MVfvfcHz5BHbcNzHt
  • Mansoori, G. A.; Carnahan, N. F.; Starling, K. E.; Leland, T. W. Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres. J. Chem. Phys. 2003, 54(4), 1523. DOI: 10.1063/1.1675048.
  • Zhao, L.; Wang, X.; Cui, J.; Cao, D. Separation of Methyl Acetate-Methanol Azeotrope by Extractive Distillation with Salt. Petrochemical Technol. 2005, 34(2), 144–147
  • Abraham, M. H.; Liszi, J. Calculations on Ionic Solvation. Part 1.—Free Energies of Solvation of Gaseous Univalent Ions Using a One-Layer Continuum Model. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1978, 74, 1604–1614. DOI: 10.1039/F19787401604.
  • Stearn, A. E.; Eyring, H. The Deduction of Reaction Mechanisms from the Theory of Absolute Rates. J. Chem. Phys. 1937, 5(2), 113. DOI: 10.1063/1.1749988.
  • Sergeeva, V. F.;. Salting-out and Salting-in of Non-Electrolytes. Russ. Chem. Rev. 1965, 34(4), 309. DOI: 10.1070/RC1965V034N04ABEH001446.
  • Freire, M. G.; Neves, C. M. S. S.; Silva, A. M. S.; Santos, L. M. N. B. F.; Marrucho, I. M.; Rebelo, L. P. N.; Shah, J. K.; Maginn, E. J.; Coutinho, J. A. P. 1H NMR and Molecular Dynamics Evidence for an Unexpected Interaction on the Origin of Salting-In/Salting-Out Phenomena. J. Phys. Chem. B. 2010, 114(5), 2004–2014. DOI: 10.1021/JP9095634/SUPPL_FILE/JP9095634_SI_001.PDF.
  • Kalra, A.; Tugcu, N.; Cramer, S. M.; Garde, S. Salting-In and Salting-Out of Hydrophobic Solutes in Aqueous Salt Solutions. J. Phys. Chem. B. 2001, 105(27), 6380–6386. DOI: 10.1021/JP010568.
  • Xie, S.; Ji, W.; Zhang, Y.; Zhou, Y.; Wang, Z.; Yi, C.; Qiu, X. Biobutanol Recovery from Model Solutions/Fermentation Broth Using Tripotassium Phosphate. Biochem. Eng. J. 2016, 115, 85–92. DOI: 10.1016/j.bej.2016.08.010.
  • Fu, C.; Li, Z.; Zhang, Y.; Yi, C.; Xie, S. Assessment of Extraction Options for a Next-Generation Biofuel: Recovery of Bio-Isobutanol from Aqueous Solutions. Eng. Life Sci. 2021, 21(10), 653–665. DOI: 10.1002/elsc.202000090.
  • Xie, S.; Zhang, Y.; Yi, C.; Qiu, X. Biobutanol Recovery from Model Solutions Using Potassium Pyrophosphate. J. Chem. Technol. Biotechnol. 2017, 92(6), 1229–1235. DOI: 10.1002/jctb.5113.
  • Xie, S.; Zhang, Y.; Yi, C.; Qiu, X. Biobutanol Recovery from Model Solutions Using Potassium Pyrophosphate. J. Chem. Technol. Biotechnol. 2017, 92(6), 1229–1235. DOI: 10.1002/jctb.5113.
  • Xie, S.; Yi, C.; Qiu, X. Salting-out of Acetone, 1-Butanol, and Ethanol from Dilute Aqueous Solutions. AIChE J. 2015, 61(10), 3470–3478. DOI: 10.1002/aic.14872.
  • Berg, L.; Yeh, A.-I. Separation of Methyl Acetate from Methanol by Extractive Distillation. U.S. Patent No.US4597834A, 1984.
  • Wang, H.; Ji, P.; Cao, H.; Su, W.; Li, C. Design and Control of Extractive Distillation for the Separation of Methyl Acetate-Methanol-Water. Korean J. Chem. Eng. 2018, 35(12), 2336–2347. DOI: 10.1007/S11814-018-0149-Y.
  • Zheng, H.; Xie, L.; Cai, L.; Wu, D.; Zhao, S. Recovery of PVA By-Product Methyl Acetate via Reactive and Extractive Distillation. Chem. Eng. Process. Process. Intensif. 2015, 95, 214–221. DOI: 10.1016/J.CEP.2015.06.004.
  • Berg, L.; Yeh, A. I. The Separation of Methyl Acetate from Methanol by Extractive Distillation. Chem. Eng. Commun. 1984, 30(1–2), 113–117. DOI: 10.1080/00986448408911119.
  • Zhu, Z.; Geng, X.; He, W.; Chen, C.; Wang, Y.; Gao, J. Computer-Aided Screening of Ionic Liquids as Entrainers for Separating Methyl Acetate and Methanol via Extractive Distillation. Ind. Eng. Chem. Res. 2018, 57(29), 9656–9664. DOI: 10.1021/ACS.IECR.8B01355/SUPPL_FILE/IE8B01355_SI_001.PDF.
  • Graczová, E.; Šulgan, B.; Barabas, S.; Steltenpohl, P. Methyl Acetate–Methanol Mixture Separation by Extractive Distillation: Economic Aspects. Front. Chem. Sci. Eng. 2018, 12(4), 670–682. 2018 124. DOI: 10.1007/S11705-018-1769-9.
  • Berg, L.; An-Iyeh, A. I.; Ratanapupech, P. The Recovery of Ethyl Acetate by Extractive Distillation. Chem. Eng. Commun. 1985, 39(1–6), 193–199. DOI: 10.1080/00986448508911670.
  • Shi, T.; Chun, W.; Yang, A.; Su, Y.; Jin, S.; Ren, J.; Shen, W. Optimization and Control of Energy Saving Side-Stream Extractive Distillation with Heat Integration for Separating Ethyl Acetate-Ethanol Azeotrope. Chem. Eng. Sci. 2020, 215, 115373. DOI: 10.1016/J.CES.2019.115373.
  • Zhang, Q.; Liu, M.; Li, C.; Zeng, A. Design and Control of Extractive Distillation Process for Separation of the Minimum-Boiling Azeotrope Ethyl-Acetate and Ethanol. Chem. Eng. Res. Des. 2018, 136, 57–70. DOI: 10.1016/J.CHERD.2018.04.043.
  • Duan, C.; Li, C. Novel Energy-Saving Methods to Improve the Three-Column Extractive Distillation Process for Separating Ethyl Acetate and Ethanol Using Furfural. Sep. Purif. Technol. 2021, 272, 118887. DOI: 10.1016/J.SEPPUR.2021.118887.
  • Zhu, Z.; Ri, Y.; Jia, H.; Li, X.; Wang, Y.; Wang, Y. Process Evaluation on the Separation of Ethyl Acetate and Ethanol Using Extractive Distillation with Ionic Liquid. Sep. Purif. Technol. 2017, 181, 44–52. DOI: 10.1016/J.SEPPUR.2017.03.011.
  • Ma, S.; Shang, X.; Li, L.; Song, Y.; Pan, Q.; Sun, L. Energy-Saving Thermally Coupled Ternary Extractive Distillation Process Using Ionic Liquids as Entrainer for Separating Ethyl Acetate-Ethanol-Water Ternary Mixture. Sep. Purif. Technol. 2019, 226, 337–349. DOI: 10.1016/J.SEPPUR.2019.05.103.
  • Pan, Q.; Shang, X.; Ma, S.; Li, J.; Song, Y.; Sun, M.; Liu, J.; Sun, L. Control Comparison of Extractive Distillation Configurations for Separating Ethyl Acetate-Ethanol-Water Ternary Mixture Using Ionic Liquids as Entrainer. Sep. Purif. Technol. 2020, 236, 116290. DOI: 10.1016/J.SEPPUR.2019.116290.
  • Berg, L.; Yeh, A. I. The Breaking of Ternary Acetate-Alcohol-Water Azeotropes by Extractive Distillation. Chem. Eng. Commun. 1986, 48(1–3), 93–101. DOI: 10.1080/00986448608911779.
  • Berg, L.; Yeh, A.-I. Separation of N-Propyl Acetate from n-Propanol and Water by Extractive Distillation. U.S. Patent No.US4676874A, 1987.
  • You, X.; Zhao, K.; Li, L.; Qiu, T. Ionic Liquids as Entrainer in Extractive Distillation for Effectively Separating 1-Propanol–Water Azeotropic Mixture. Chin. J. Chem. Eng. 2021. DOI: 10.1016/J.CJCHE.2021.12.007.
  • Agreda, V. H.; Partin, L. R. Reactive Distillation Process for the Production of Methyl Acetate. U.S. Patent No.US4435595A, 1984.
  • Agreda, V. H.; Lilly, R. D. Preparation of Ultra High Purity Methyl Acetate. U.S. Patent No.US4939294A, 1990.
  • Mallaiah, M.; Reddy, G. V. Optimization Studies on a Continuous Catalytic Reactive Distillation Column for Methyl Acetate Production with Response Surface Methodology. J. Taiwan Inst. Chem. Eng. 2016, 69, 25–40. DOI: 10.1016/J.JTICE.2016.10.007.
  • Kumar, M. V. P.; Kaistha, N. Temperature Based Inferential Control of a Methyl Acetate Reactive Distillation Column. Chem. Eng. Res. Des. 2007, 85(9), 1268–1280. DOI: 10.1205/CHERD06053.
  • Horstmann, S.; Pöpken, T.; Gmehling, J. Phase Equilibria and Excess Properties for Binary Systems in Reactive Distillation Processes: Part I. Methyl Acetate Synthesis. Fluid Phase Equilib. 2001, 180(1–2), 221–234. DOI: 10.1016/S0378-3812(01)00347-8.
  • Zuo, C.; Pan, L.; Cao, S.; Li, C.; Zhang, S. C. Kinetics, and Reactive Distillation for Methyl Acetate Synthesis. Ind. Eng. Chem. Res. 2014, 53(26), 10540–10548. DOI: 10.1021/IE500371C/SUPPL_FILE/IE500371C_SI_001.PDF.
  • Bessling, B.; Löning, J. M.; Ohligschläger, A.; Schembecker, G.; Sundmacher, K. Investigations on the Synthesis of Methyl Acetate in a Heterogeneous Reactive Distillation Process. Chem. Eng. Technol. 1998, 21(5), 393–400. DOI: 10.1002/(SICI)1521-4125(199805)21:5<393::AID-CEAT393>3.0.CO;2-9.
  • Pöpken, T.; Steinigeweg, S.; Gmehling, J. Synthesis and Hydrolysis of Methyl Acetate by Reactive Distillation Using Structured Catalytic Packings:  Experiments and Simulation. Ind. Eng. Chem. Res. 2001, 40(6), 1566–1574. DOI: 10.1021/IE0007419.
  • Bangga, G.; Novita, F. J.; Lee, H. Y. Evolutional Computational Fluid Dynamics Analyses of Reactive Distillation Columns for Methyl Acetate Production Process. Chem. Eng. Process. - Process Intensif. 2019, 135, 42–52. DOI: 10.1016/J.CEP.2018.11.015.
  • Giwa, A.;. Methyl Acetate Reactive Distillation Process Modeling, Simulation and Optimization Using Aspen Plus. ARPN J. Eng. Appl. Sci. 2013, 8(5), 386–392. https://www.semanticscholar.org/paper/METHYL-ACETATE-REACTIVE-DISTILLATION-PROCESS-%2C-AND-Giwa/8fa881fb5447584f4ce1fd46c003dbdf3c9b624f.
  • Kenig, E. Y.; Bäder, H.; Górak, A.; Beßling, B.; Adrian, T.; Schoenmakers, H. Investigation of Ethyl Acetate Reactive Distillation Process. Chem. Eng. Sci. 2001, 56(21–22), 6185–6193. DOI: 10.1016/S0009-2509(01)00206-8.
  • Hu, S.; Zhang, B.; Hou, X.; Li, D.; Chen, Q. Design and Simulation of an Entrainer-Enhanced Ethyl Acetate Reactive Distillation Process. Chem. Eng. Process. Process. Intensif. 2011, 50(11–12), 1252–1265. DOI: 10.1016/J.CEP.2011.07.012.
  • Vora, N.; Daoutidis, P. Dynamics and Control of an Ethyl Acetate Reactive Distillation Column. Ind. Eng. Chem. Res. 2001, 40(3), 833–849. DOI: 10.1021/IE990633Q.
  • Santaella, M. A.; Orjuela, A.; Narváez, P. C. Comparison of Different Reactive Distillation Schemes for Ethyl Acetate Production Using Sustainability Indicators. Chem. Eng. Process. Process. Intensif. 2015, 96, 1–13. DOI: 10.1016/J.CEP.2015.07.027.
  • Ding, H.; Liu, M.; Gao, Y.; Qi, J.; Zhou, H.; Li, J. Microwave Reactive Distillation Process for Production of Ethyl Acetate. Ind. Eng. Chem. Res. 2016, 55(6), 1590–1597. DOI: 10.1021/ACS.IECR.5B00893/SUPPL_FILE/IE5B00893_SI_001.PDF.
  • Fernandez, M. F.; Barroso, B.; Meyer, X. M.; Meyer, M.; Le Lann, M. V.; Le Roux, G. C.; Brehelin, M. Experiments and Dynamic Modeling of a Reactive Distillation Column for the Production of Ethyl Acetate by considering the Heterogeneous Catalyst Pilot Complexities. Chem. Eng. Res. Des. 2013, 91(12), 2309–2322. DOI: 10.1016/J.CHERD.2013.05.013.
  • Xie, J.; Li, C.; Peng, F.; Dong, L.; Ma, S. Experimental and Simulation of the Reactive Dividing Wall Column Based on Ethyl Acetate Synthesis. Chin. J. Chem. Eng. 2018, 26(7), 1468–1476. DOI: 10.1016/J.CJCHE.2018.01.021.
  • He, R.; Dong, Y.; Zou, Y.; Zhao, J.; Yaseen, M.; Mu, C.; Tong, Z. Simulation and Optimization of Reactive Distillation for the Production of Ethyl Acetate Using [BMIM]HSO4 as Catalyst. Chem. Eng. Res. Des. 2020, 161, 218–231. DOI: 10.1016/J.CHERD.2020.01.014.
  • Lee, H. Y.; Li, S. Y.; Chen, C. L. Evolutional Design and Control of the Equilibrium-Limited Ethyl Acetate Process via Reactive Distillation-Pervaporation Hybrid Configuration. Ind. Eng. Chem. Res. 2016, 55(32), 8802–8817. DOI: 10.1021/ACS.IECR.6B01358/SUPPL_FILE/IE6B01358_SI_001.PDF.
  • Lv, B.; Liu, G.; Dong, X.; Wei, W.; Jin, W. Novel Reactive Distillation-Pervaporation Coupled Process for Ethyl Acetate Production with Water Removal from Reboiler and Acetic Acid Recycle. Ind. Eng. Chem. Res. 2012, 51(23), 8079–8086. DOI: 10.1021/IE3004072/SUPPL_FILE/IE3004072_SI_001.PDF.
  • Feng, Z.; Shen, W.; Rangaiah, G. P.; Lv, L.; Dong, L. Process Development, Assessment, and Control of Reactive Dividing-Wall Column with Vapor Recompression for Producing N -propyl Acetate. Ind. Eng. Chem. Res. 2019, 58(1), 276–295. DOI: 10.1021/ACS.IECR.8B05122/ASSET/IMAGES/ACS.IECR.8B05122.SOCIAL.JPEG_V03.
  • Brehelin, M.; Forner, F.; Forner, F.; Repke, J.-U.; Wozny, G.; Wozny, G.; Wozny, G. Production of N-Propyl Acetate by Reactive Distillation: Experimental and Theoretical Study. Chem. Eng. Res. Des. 2007, 85(1), 109–117. DOI: 10.1205/cherd06112.
  • Brehelin, M.; Forner, F.; Rouzineau, D.; Repke, J. U.; Meyer, X.; Meyer, M.; Wozny, G. Production of N-Propyl Acetate by Reactive Distillation: Experimental and Theoretical Study. Chem. Eng. Res. Des. 2007, 85(1), 109–117. DOI: 10.1205/CHERD06112.
  • Wang, S. J.; Lee, C. J.; Jang, S. S.; Shieh, S. S. Plant-Wide Design and Control of Acetic Acid Dehydration System via Heterogeneous Azeotropic Distillation and Divided Wall Distillation. J. Process Control. 2008, 18(1), 45–60. DOI: 10.1016/J.JPROCONT.2007.05.008.
  • Janakey Devi, V. K. P.; Sai, P. S. T.; Balakrishnan, A. R. Heterogeneous Azeotropic Distillation for the Separation of N-Propanol + Water Mixture Using n-Propyl Acetate as Entrainer. Fluid Phase Equilib. 2017, 447, 1–11. DOI: 10.1016/J.FLUID.2017.05.012.
  • Wang, L.; Wang, Y.; Wu, L.; Wei, G. F. Properties, Performances, and Separation Application of Polymeric Pervaporation Membranes: A Review. Polymers (Basel). 2020, 12(7), 1466. DOI: 10.3390/polym12071466.
  • Aptel, P.; Challard, N.; Cuny, J.; Neel, J. Application of the Pervaporation Process to Separate Azeotropic Mixtures. J. Memb. Sci. 1976, 1(C), 271–287. DOI: 10.1016/S0376-7388(00)82272-3.
  • Gorri, D.; Ibáñez, R.; Ortiz, I. Comparative Study of the Separation of Methanol–Methyl Acetate Mixtures by Pervaporation and Vapor Permeation Using a Commercial Membrane. J. Memb. Sci. 2006, 280(1–2), 582–593. DOI: 10.1016/J.MEMSCI.2006.02.016.
  • Assabumrungrat, S.; Phongpatthanapanich, J.; Praserthdam, P.; Tagawa, T.; Goto, S. Theoretical Study on the Synthesis of Methyl Acetate from Methanol and Acetic Acid in Pervaporation Membrane Reactors: Effect of Continuous-Flow Modes. Chem. Eng. J. 2003, 95(1–3), 57–65. DOI: 10.1016/S1385-8947(03)00084-6.
  • Genduso, G.; Farrokhzad, H.; Latré, Y.; Darvishmanesh, S.; Luis, P.; Van der Bruggen, B. Polyvinylidene Fluoride Dense Membrane for the Pervaporation of Methyl Acetate–Methanol Mixtures. J. Memb. Sci. 2015, 482, 128–136. DOI: 10.1016/J.MEMSCI.2015.02.008.
  • Abdallah, H.; El-Gendi, A.; El-Zanati, E.; Matsuura, T. Pervaporation of Methanol from Methylacetate Mixture Using Polyamide-6 Membrane. New Pub Balaban 2013, 51(40–42), 7807–7814. DOI: 10.1080/19443994.2013.775077.
  • Xiao, T.-H.; Xu, X.-L.; Qin, H.-J.; Ying, X.-G.; Zhang, R.-F. Zeolite 4A-Incorporated Polymeric Membranes for Pervaporation Separation of Methanol-Methyl Acetate Mixtures. J. Inorg. Organomet. Polym. Mater. 2011, 21(4), 816–822. DOI: 10.1007/S10904-011-9527-1/FIGURES/10.
  • Figueroa Paredes, D. A.; Laoretani, D. S.; Zelin, J.; Vargas, R.; Vecchietti, A. R.; Espinosa, J. Screening of Pervaporation Membranes for the Separation of Methanol-Methyl Acetate Mixtures: An Approach Based on the Conceptual Design of the Pervaporation-Distillation Hybrid Process. Sep. Purif. Technol. 2017, 189, 296–309. DOI: 10.1016/J.SEPPUR.2017.08.027.
  • Zong, C.; Guo, Q.; Shen, B.; Yang, X.; Zhou, H.; Jin, W. Heat-Integrated Pervaporation-Distillation Hybrid System for the Separation of Methyl Acetate-Methanol Azeotropes. Ind. Eng. Chem. Res. 2021, 60(28), 10327–10337. DOI: 10.1021/ACS.IECR.1C01513/SUPPL_FILE/IE1C01513_SI_001.PDF.
  • Xia, S.; Dong, X.; Zhu, Y.; Wei, W.; Xiangli, F.; Jin, W. Dehydration of Ethyl Acetate–Water Mixtures Using PVA/Ceramic Composite Pervaporation Membrane. Sep. Purif. Technol. 2011, 77(1), 53–59. DOI: 10.1016/J.SEPPUR.2010.11.019.
  • Yuan, H. K.; Ren, J.; Ma, X. H.; Xu, Z. L. Dehydration of Ethyl Acetate Aqueous Solution by Pervaporation Using PVA/PAN Hollow Fiber Composite Membrane. Desalination. 2011, 280(1–3), 252–258. DOI: 10.1016/J.DESAL.2011.07.002.
  • Bai, Y.; Qian, J.; Zhang, C.; Zhang, L.; An, Q.; Chen, H. Cross-Linked HTPB-Based Polyurethaneurea Membranes for Recovery of Ethyl Acetate from Aqueous Solution by Pervaporation. J. Memb. Sci. 2008, 325(2), 932–939. DOI: 10.1016/J.MEMSCI.2008.09.019.
  • Yongquan, D.; Ming, W.; Lin, C.; Mingjun, L. P. Characterization of P(VDF-HFP)/[Bmim]BF4 Ionic Liquids Hybrid Membranes and Their Pervaporation Performance for Ethyl Acetate Recovery from Water. Desalination. 2012, 295, 53–60. DOI: 10.1016/J.DESAL.2012.03.018.
  • Tanaka, S.; Chao, Y.; Araki, S.; Miyake, Y. Pervaporation Characteristics of Pore-Filling PDMS/PMHS Membranes for Recovery of Ethylacetate from Aqueous Solution. J. Memb. Sci. 2010, 348(1–2), 383–388. DOI: 10.1016/J.MEMSCI.2009.11.033.
  • Wang, Y.;. Pervaporation Dehydration of Ethyl Acetate via PBI/PEI Hollow Fiber Membranes. Ind. Eng. Chem. Res. 2015, 54(11), 3082–3089. DOI: 10.1021/IE504681V/SUPPL_FILE/IE504681V_SI_001.PDF.
  • Salt, Y.; Hasanoǧlu, A.; Salt, I.; Keleşer, S.; Özkan, S.; Dinçer, S. Pervaporation Separation of Ethylacetate–Water Mixtures through a Crosslinked Poly(Vinylalcohol) Membrane. Vacuum. 2005, 79(3–4), 215–220. DOI: 10.1016/J.VACUUM.2005.03.010.
  • Tian, X.; Zhu, B.; Xu, Y. P(VDF-Co-HFP) Membrane for Recovery of Aroma Compounds from Aqueous Solutions by Pervaporation: І. Ethyl Acetate/Water System. J. Memb. Sci. 2005, 248(1–2), 109–117. DOI:10.1016/J.MEMSCI.2004.10.003.
  • Sato, K.; Sugimoto, K.; Nakane, T. Separation of Ethanol/Ethyl Acetate Mixture by Pervaporation at 100–130°C through NaY Zeolite Membrane for Industrial Purpose. Microporous Mesoporous Mater. 2008, 115(1–2), 170–175. DOI: 10.1016/J.MICROMESO.2007.10.054.
  • Hasanoǧlu, A.; Salt, Y.; Keleşer, S.; Özkan, S.; Dinçer, S. Pervaporation Separation of Ethyl Acetate–Ethanol Binary Mixtures Using Polydimethylsiloxane Membranes. Chem. Eng. Process. Process. Intensif. 2005, 44(3), 375–381. DOI: 10.1016/J.CEP.2004.06.001.
  • Pan, Y.; Zhu, T.; Xia, Q.; Yu, X.; Wang, Y. Constructing Superhydrophobic ZIF-8 Layer with Bud-like Surface Morphology on PDMS Composite Membrane for Highly Efficient Ethanol/Water Separation. J. Environ. Chem. Eng. 2021, 9(1), 104977. DOI: 10.1016/J.JECE.2020.104977.
  • Zong, C.; Yang, X.; Chen, D.; Chen, Y.; Zhou, H.; Jin, W. Rational Tuning of the Viscosity of Membrane Solution for the Preparation of Sub-Micron Thick PDMS Composite Membrane for Pervaporation of Ethanol-Water Solution. Sep. Purif. Technol. 2021, 255, 117729. DOI: 10.1016/J.SEPPUR.2020.117729.
  • Luo, R.; Bai, P.; Lyu, J.; Guo, X. Fabrication of Melamine-Based Hybrid Organic Membrane for Ethanol/Water Pervaporation. Microporous Mesoporous Mater. 2022, 335, 111810. DOI: 10.1016/J.MICROMESO.2022.111810.
  • Lan, J.; Li, L.; Song, W.; Saulat, H.; Wu, H.; Yang, J.; Yang, C.; Li, Y.; Lu, J.; Zhang, Y. Pure-Silica MFI Zeolite Membrane by Cooperative Templating Approach for Ethanol-Water Separation. AIChE J. 2021, 67(6), e17184. DOI: 10.1002/AIC.17184.
  • Ong, Y. T.; Tan, S. H. ssPervaporation Separation of a Ternary Azeotrope Containing Ethyl Acetate, Ethanol and Water Using a Buckypaper Supported Ionic Liquid Membrane. Chem. Eng. Res. Des. 2016, 109, 116–126. DOI: 10.1016/J.CHERD.2015.10.051.
  • Penkova, A.; Polotskaya, G.; Toikka, A. Pervaporation Composite Membranes for Ethyl Acetate Production. Chem. Eng. Process. Process. Intensif. 2015, 87, 81–87. DOI: 10.1016/J.CEP.2014.11.015.
  • Song, K. H.; Song, J. H.; Lee, K. R. Vapor Permeation of Ethyl Acetate, Propyl Acetate, and Butyl Acetate with Hydrophobic Inorganic Membrane. Sep. Purif. Technol. 2003, 30(2), 169–176. DOI: 10.1016/S1383-5866(02)00140-5.
  • Wang, C.; Zhang, Z.; Zhang, X.; Gao, J.; Stewart, B. Energy-Saving Hybrid Processes Combining Pressure-Swing Reactive Distillation and Pervaporation Membrane for n-Propyl Acetate Production. Sep. Purif. Technol. 2019, 221, 1–11. DOI: 10.1016/J.SEPPUR.2019.03.074.
  • Li, Y.; Huo, B.; Xu, Z.; Qi, H.; Li, X.; Cui, P.; Zhu, Z.; Wang, Y.; Yang, J.; Gao, J. Energy-Saving and Environmentally Friendly Pervaporation-Distillation Hybrid Process for Alcohol and Ester Recovery from Wastewater Containing Three Binary Azeotropes. Sep. Purif. Technol. 2022, 281, 119889. DOI: 10.1016/J.SEPPUR.2021.119889.
  • Casas, A.; Ramos, M. J.; Pérez, Á. Adsorption Equilibrium and Kinetics of Methyl Acetate/Methanol and Methyl Acetate/Water Mixtures on Zeolite 5A. Chem. Eng. J. 2013, 220, 337–342. DOI: 10.1016/J.CEJ.2013.01.042.
  • Wu, S.; Wang, J.; Liu, G.; Yang, Y.; Lu, J. Separation of Ethyl Acetate (Ea)/water by Tubular Silylated MCM-48 Membranes Grafted with Different Alkyl Chains. J. Memb. Sci. 2012, 390-391(390– 391), 175–181. DOI: 10.1016/J.MEMSCI.2011.11.034.
  • Stoycheva, I. G.; Tsyntsarski, B. G.; Petrova, B. N.; Kumanek, B.; Budinova, T. K.; Petrov, N. V. Adsorption of Ethyl Acetate from Water by Nanoporous Carbon Prepared from Waste Materials. Water. Air. Soil Pollut. 2016, 227(12), 1–9. DOI: 10.1007/S11270-016-3099-1/TABLES/4.
  • Iliuta, M. C.; Thyrion, F. C.; Landauer, O. M. Salt Effect on the Isobaric Vapor-Liquid Equilibrium of the Methyl Acetate + Methanol System. J. Chem. Eng. Data 1996, 41(4), 713–717. DOI: 10.1021/JE960020.
  • Iliuta, M. C.; Thyrion, F. C.; Landauer, O. M. Salt Effect on the Isobaric Vapor-Liquid Equilibrium of the Methyl Acetate + Methanol System. J. Chem. Eng. Data.1996, 41(4), 713–717. DOI: 10.1021/je960020.
  • Martin, M. C.; Mato, R. B. Isobaric Vapor-Liquid Equilibrium for Methyl Acetate + Methanol + Water at 101.3 KPa. J. Chem. Eng. Data 1995, 40(1), 326–327. DOI: 10.1021/je00017a071.
  • Nakamura, A.;. Ternary System: Methyl Acetate-Methanol-Water and Methyl Acetate-Methanol-Aqueous Salt Solution. J. Soc. Chem. Ind. Japan 1968, 71(7), 951–953. DOI:10.1246/nikkashi1898.71.7_951.
  • Xing, Y.; Cui, X.; Xu, S.; Feng, T.; Zhang, X.; He, J.; Wang, J. Isobaric Vapor–Liquid Equilibrium for Methyl Acetate + Methanol with Double Salt Ionic Liquid [EMIM][Cl]0.5[DCA]0.5 as Entrainer at 101.3 KPa. Fluid Phase Equilib. 2021, 541, 113086. DOI: 10.1016/J.FLUID.2021.113086.
  • Hashitani, M.; Hirata, M. Salt Effect in Vapor-Liquid Equilibrium Acetic Ester-Alcohol with Potassium Acetate and Zinc Chloride. J. Chem. Eng. Japan 1969, 2(2), 149–153. DOI: 10.1252/JCEJ.2.149.
  • Liu, Q.; Zeng, H.; Lan, X.; Wang, Q.; Song, H. Isobaric Vapor−Liquid Equilibria for 2-Methyl-Butan-1-Ol + 3-Methyl-Butan-1-Ol + CuCl2, ZnCl2, and FeCl3 Systems at 101.3 KPa. J. Chem. Eng. Data 2010, 55(8), 2653–2657. DOI: 10.1021/JE9008365.
  • Johnson, G. C.; Smith, R. P. The Boiling Point Elevation. IV. Potassium Bromide in Water1. J. Am. Chem. Soc. 2002, 63(5), 1351–1353. DOI: 10.1021/JA01850A060.
  • Saxton, B.; SMITH Vol, R. P.; Blair Saxton, B.; Smith, R. P. The Activity Coefficient of Potassium Chloride in Aqueous Solution from Boiling Point Data1. J. Am. Chem. Soc. 2002, 54(7), 2626–2636. DOI: 10.1021/JA01346A005.
  • Ge, X.; Wang, X. Estimation of Freezing Point Depression, Boiling Point Elevation, and Vaporization Enthalpies of Electrolyte Solutions. Ind. Eng. Chem. Res. 2009, 48(4), 2229–2235. DOI: 10.1021/IE801348C/SUPPL_FILE/IE801348C_SI_001.PDF.
  • Rodney Smith, B. P. ;.;. Properties of Steam, T.; Wiley And, J. The Boiling Point Elevation. II. Sodium Chloride 0.05 to 1.0 M and 60 to 100°. J. Am. Chem. Soc. 1939, 61(2), 500–503. DOI: 10.1021/JA01871A079.
  • Bancroft, W. D.; Davis, H. L. The Boiling-Points of Aqueous Solutions. J. Phys. Chem. 1929, 33(4), 591–604. DOI: 10.1021/J150298A008.
  • Xiu, Z. L.; Zeng, A. P. Present State and Perspective of Downstream Processing of Biologically Produced 1,3-Propanediol and 2,3-Butanediol. Appl. Microbiol. Biotechnol. 2008, 78(6), 917–926. DOI: 10.1007/S00253-008-1387-4/FIGURES/5.
  • Fu, C.; Li, Z.; Jia, C.; Zhang, W.; Zhang, Y.; Yi, C.; Xie, S. Recent Advances on Bio-Based Isobutanol Separation. Energy Convers. Manag. X 2021, 10, 100059. DOI: 10.1016/j.ecmx.2020.100059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.