1,456
Views
3
CrossRef citations to date
0
Altmetric
Review

Insights into the Eco-Friendly Recovery Process for Valuable Metals from Waste Lithium-ion Batteries by Organic Acids Leaching

, , , ORCID Icon &
Pages 82-99 | Received 06 Apr 2022, Accepted 08 Nov 2022, Published online: 06 Jan 2023

References

  • Barik, S.; Prabaharan, G.; Kumar, B. An Innovative Approach to Recover the Metal Values from Spent lithium-ion Batteries. Waste Manag. 2016, 51, 222–226. DOI: 10.1016/j.wasman.2015.11.004.
  • Yang, Y.; Huang, G.; Xu, S.; He, Y.; Liu, X. Thermal Treatment Process for the Recovery of Valuable Metals from Spent lithium-ion Batteries. Hydrometallurgy. 2016, 165, 390–396. DOI: 10.1016/j.hydromet.2015.09.025.
  • Baldé, C. P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. United Nations University, International Telecommunication Union: Bonn/Geneva/Vienna, 2017. https://collections.unu.edu/eserv/UNU:6341/Global-E-waste_Monitor_2017__electronic_single_pages_.pdf (accessed Sept 22, 2022).
  • Forti, V.; Baldé, C. P.; Cornelis, P.; Kuehr, R.; Bel, G. The Global E-waste Monitor–2020, Quantities, Flows, and the Circular Economy Potential. United Nations University, International Telecommunication Union & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna: Bonn/Geneva/Vienna, 2020.
  • RECHARGE – The Batteries Report 2018 – April ’18. 2018. [31 May 2018]. Available from: https://www.rechargebatteries.org/wp-content/uploads/2018/05/RECHARGE-The-Batteries-Report-2018-April-18.pdf.
  • Melin, H. E.; Storage, C. E.; Ledung, G. State-of-the-art in reuse and recycling of lithium-ion batteries–A research review; Circular Energy Storage: London, 2019. (accessed sept 22, 2022).
  • Yurramendi, L.; Hidalgo, J.; Siriwardana, A. A Sustainable Process for the Recovery of Valuable Metals from Spent Lithium Ion Batteries by Deep Eutectic Solvents Leaching. Materials Proc. 2022, 5, 100. DOI:10.3390/materproc2021005100.
  • Melin, H. The lithium-ion battery end-of-life market–A baseline study; World Economic Forum: ColognySwitzerland, 2018. https://www3.weforum.org/docs/GBA_EOL_baseline_Circular_Energy_Storage.pdf (accessed sept 22, 2022).
  • Chen, W.-S.; Ho, H.-J. Recovery of Valuable Metals from lithium-ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods. Metals. 2018, 8(5), 321. DOI: 10.3390/met8050321.
  • Zeng, X.; Li, J.; Liu, L. Solving Spent lithium-ion Battery Problems in China: Opportunities and Challenges. Ren. Sust. Energy Rev. 2015, 52, 1759–1767. DOI: 10.1016/j.rser.2015.08.014.
  • Goodenough, J. B. How We Made the Li-ion Rechargeable Battery. Nat. Electron. 2018, 1(3), 204–204. DOI: 10.1038/s41928-018-0048-6.
  • Ordoñez, J.; Gago, E. J.; Girard, A. Processes and Technologies for the Recycling and Recovery of Spent lithium-ion Batteries. Ren. Sust. Energy Rev. 2016, 60, 195–205. DOI: 10.1016/j.rser.2015.12.363.
  • Kang, J.; Senanayake, G.; Sohn, J.; Shin, S. M. Recovery of Cobalt Sulfate from Spent Lithium Ion Batteries by Reductive Leaching and Solvent Extraction with Cyanex 272. Hydrometallurgy. 2010, 100(3–4), 168–171. DOI: 10.1016/j.hydromet.2009.10.010.
  • Shin, S. M.; Kim, N. H.; Sohn, J. S.; Yang, D. H.; Kim, Y. H. Development of a Metal Recovery Process from Li-ion Battery Wastes. Hydrometallurgy. 2005, 79(3–4), 172–181. DOI: 10.1016/j.hydromet.2005.06.004.
  • Alves Dias, P.; Blagoeva, D.; Pavel, C.; Arvanitidis, N. Cobalt: Demand-supply Balances in the Transition to Electric Mobility. Luxembourg: Report EUR, 2018; p 29381. 978-92-79-94311-9. doi: 10.2760/97710.
  • Olivetti, E.; Ceder, G.; Gaustad, G.; Fu, X. Lithium-ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals.Joule. 2017,1(2), 229–243. doi:10.1016/j.joule.2017.08.019.
  • Li, L.; Dunn, J.; Zhang, X.; Gaines, L.; Wu, F.; Chen, R. Recovery of Metals from Spent lithium-ion Batteries with Organic Acids as Leaching Reagents and Life Cycle Analysis. J. Power Sources. 2013, 233(ANL/ES/JA–72270. DOI: 10.1016/j.jpowsour.2012.12.089.
  • Zheng, X.; Zhu, Z.; Lin, X.; Zhang, Y.; He, Y.; Cao, H.; Sun, Z. A mini-review on Metal Recycling from Spent Lithium Ion Batteries. Engineering. 2018, 4(3), 361–370. DOI: 10.1016/j.eng.2018.05.018.
  • Chagnes, A.; Pospiech, B. A Brief Review on Hydrometallurgical Technologies for Recycling Spent Lithium-ion Batteries. J. Chem. Technol. Biotechnol. 2013, 88(7), 1191–1199. DOI: 10.1002/jctb.4053.
  • Xu, J.; Thomas, H.; Francis, R. W.; Lum, K. R.; Wang, J.; Liang, B. A Review of Processes and Technologies for the Recycling of lithium-ion Secondary Batteries. J. Power Sources. 2008, 177(2), 512–527. DOI: 10.1016/j.jpowsour.2007.11.074.
  • Bernardes, A. M.; Espinosa, D. C. R.; Tenório, J. S. Recycling of Batteries: A Review of Current Processes and Technologies. J. Power Sources. 2004, 130(1–2), 291–298. DOI: 10.1016/j.jpowsour.2003.12.026.
  • Träger, T.; Friedrich, B.; Weyhe, R. Recovery Concept of Value Metals from Automotive Lithium-Ion Batteries. Chem. Ing. Tech. 2015, 87(11), 1550–1557. DOI: 10.1002/cite.201500066.
  • Horeh, N. B.; Mousavi, S.; Shojaosadati, S. Bioleaching of Valuable Metals from Spent lithium-ion Mobile Phone Batteries Using Aspergillus Niger. J. Power Sources. 2016, 320, 257–266. DOI: 10.1016/j.jpowsour.2016.04.104.
  • Zeng, G.; Deng, X.; Luo, S.; Luo, X.; Zou, J. A copper-catalyzed Bioleaching Process for Enhancement of Cobalt Dissolution from Spent lithium-ion Batteries. J. Haz. Mat. 2012, 199, 164–169. DOI: 10.1016/j.jhazmat.2011.10.063.
  • Brückner, L.; Frank, J.; Elwert, T. Industrial Recycling of lithium-ion batteries—A Critical Review of Metallurgical Process Routes. Metals. 2020, 10(8), 1107. DOI: 10.3390/met10081107.
  • Tytgat, J. The Recycling Efficiency of Li-ion EV Batteries according to the European Commission Regulation, and the Relation with the End-of-Life Vehicles Directive Recycling Rate. 2013 World Electric Vehicle Symposium and Exhibition (EVS27) 17-20 November 2013; IEEE: Barcelona, Spain. 2013. doi: 10.1109/EVS.2013.6914885.
  • Wang, R.-C.; Lin, Y.-C.; Wu, S.-H. A Novel Recovery Process of Metal Values from the Cathode Active Materials of the lithium-ion Secondary Batteries. Hydrometallurgy. 2009, 99(3–4), 194–201. DOI: 10.1016/j.hydromet.2009.08.005.
  • Lee, C. K.; Rhee, K.-I. Preparation of LiCoO2 from Spent lithium-ion Batteries. J. Power Sources. 2002, 109(1), 17–21. DOI: 10.1016/S0378-7753(02)00037-X.
  • Sun, L.; Qiu, K. Vacuum Pyrolysis and Hydrometallurgical Process for the Recovery of Valuable Metals from Spent lithium-ion Batteries. J. Haz. Mat. 2011, 194, 378–384. DOI: 10.1016/j.jhazmat.2011.07.114.
  • Chen, X.; Ma, H.; Luo, C.; Zhou, T. Recovery of Valuable Metals from Waste Cathode Materials of Spent lithium-ion Batteries Using Mild Phosphoric Acid. J. Haz. Mat. 2017, 326, 77–86. DOI: 10.1016/j.jhazmat.2016.12.021.
  • Shuva, M. A. H.; Kurny, A. Hydrometallurgical Recovery of Value Metals from Spent Lithium Ion Batteries. Am J Mater Eng Technol. 2013, 1(1), 8–12. DOI: 10.12691/materials-1-1-2.
  • Huang, Y.; Han, G.; Liu, J.; Chai, W.; Wang, W.; Yang, S.; Su, S. A Stepwise Recovery of Metals from Hybrid Cathodes of Spent Li-ion Batteries with leaching-flotation-precipitation Process. J. Power Sources. 2016, 325, 555–564. DOI: 10.1016/j.jpowsour.2016.06.072.
  • Li, H.; Xing, S.; Liu, Y.; Li, F.; Guo, H.; Kuang, G. Recovery of Lithium, Iron, and Phosphorus from Spent LiFePO4 Batteries Using Stoichiometric Sulfuric Acid Leaching System. ACS Sust. Chem. Eng. 2017, 5(9), 8017–8024. DOI: 10.1021/acssuschemeng.7b01594.
  • Swain, B.; Jeong, J.; Lee, J.-C.; Lee, G.-H.; Sohn, J.-S. Hydrometallurgical Process for Recovery of Cobalt from Waste Cathodic Active Material Generated during Manufacturing of Lithium Ion Batteries. J. Power Sources. 2007, 167(2), 536–544. DOI: 10.1016/j.jpowsour.2007.02.046.
  • Chen, X.; Zhou, T. Hydrometallurgical Process for the Recovery of Metal Values from Spent lithium-ion Batteries in Citric Acid Media. Waste Manag. Res. 2014, 32(11), 1083–1093. DOI: 10.1177/0734242X14557380.
  • Li, L.; Ge, J.; Wu, F.; Chen, R.; Chen, S.; Wu, B. Recovery of Cobalt and Lithium from Spent Lithium Ion Batteries Using Organic Citric Acid as Leachant. J. Haz. Mat. 2010, 176(1–3), 288–293. DOI: 10.1016/j.jhazmat.2009.11.026.
  • Chen, X.; Luo, C.; Zhang, J.; Kong, J.; Zhou, T. Sustainable Recovery of Metals from Spent lithium-ion Batteries: A Green Process. ACS Sust. Chem. Eng. 2015, 3(12), 3104–3113. DOI: 10.1021/acssuschemeng.5b01000.
  • Nayaka, G. P.; Pai, K. V.; Manjanna, J.; Keny, S. J. Use of Mild Organic Acid Reagents to Recover the Co and Li from Spent Li-ion Batteries. Waste Manag. 2016, 51, 234–238. DOI: 10.1016/j.wasman.2015.12.008.
  • Sun, C.; Xu, L.; Chen, X.; Qiu, T.; Zhou, T. Sustainable Recovery of Valuable Metals from Spent lithium-ion Batteries Using DL-malic Acid: Leaching and Kinetics Aspect. Waste Manag. Res. 2018, 36(2), 113–120. DOI: 10.1177/0734242X17744273.
  • Li, L.; Dunn, J. B.; Zhang, X. X.; Gaines, L.; Chen, R. J.; Wu, F.; Amine, K. Recovery of Metals from Spent lithium-ion Batteries with Organic Acids as Leaching Reagents and Environmental Assessment. J. Power Sources. 2013, 233, 180–189. DOI: 10.1016/j.jpowsour.2012.12.089.
  • Zeng, X.; Li, J.; Shen, B. Novel Approach to Recover Cobalt and Lithium from Spent lithium-ion Battery Using Oxalic Acid. J. Haz. Mat. 2015, 295, 112–118. DOI: 10.1016/j.jhazmat.2015.02.064.
  • Gao, W.; Zhang, X.; Zheng, X.; Lin, X.; Cao, H.; Zhang, Y.; Sun, Z. Lithium Carbonate Recovery from Cathode Scrap of Spent lithium-ion Battery: A closed-loop Process. Env. Sci. Tech. 2017, 51(3), 1662–1669. DOI: 10.1021/acs.est.6b03320.
  • Gao, W.; Liu, C.; Cao, H.; Zheng, X.; Lin, X.; Wang, H.; Zhang, Y.; Sun, Z. Comprehensive Evaluation on Effective Leaching of Critical Metals from Spent lithium-ion Batteries. Waste Manag. 2018, 75, 477–485. DOI: 10.1016/j.wasman.2018.02.023.
  • Zhuang, L.; Sun, C.; Zhou, T.; Li, H.; Dai, A. Recovery of Valuable Metals from LiNi0. 5Co0. 2Mn0. 3O2 Cathode Materials of Spent Li-ion Batteries Using Mild Mixed Acid as Leachant. Waste Manag. 2019, 85, 175–185. DOI: 10.1016/j.wasman.2018.12.034.
  • Crundwell, F. The Mechanism of Dissolution of the Feldspars: Part I. Dissolution at Conditions Far from Equilibrium. Hydrometallurgy. 2015, 151, 151–162. DOI: 10.1016/j.hydromet.2014.10.006.
  • Verma, A.; Kore, R.; Corbin, D. R.; Shiflett, M. B. Metal Recovery Using Oxalate Chemistry: A Technical Review. Ind. Eng. Chem. Res. 2019, 58(34), 15381–15393. DOI: 10.1021/acs.iecr.9b02598.
  • Nayaka, G.; Pai, K.; Santhosh, G.; Manjanna, J. Recovery of Cobalt as Cobalt Oxalate from Spent Lithium Ion Batteries by Using Glycine as Leaching Agent. J. Env. Chem. Eng. 2016, 4(2), 2378–2383. DOI: 10.1016/j.jece.2016.04.016.
  • Kang, J.; Sohn, J.; Chang, H.; Senanayake, G.; Shin, S. M. Preparation of Cobalt Oxide from Concentrated Cathode Material of Spent Lithium Ion Batteries by Hydrometallurgical Method. Adv. Powder Technol. 2010, 21(2), 175–179. DOI: 10.1016/j.apt.2009.10.015.
  • Latif, N. A.; Ahmed, A. Recovery of Cobalt and Lithium from Spent Lithium Ion Batteries. Eng. Technol. J 2017, 35, 139–148.
  • Liu, Y.-J.; Hu, Q.-Y.; Li, X.-H.; Wang, Z.-X.; Guo, H.-J. Recycle and Synthesis of LiCoO2 from Incisors Bound of Li-ion Batteries. Trans. Nonferrous Met. Soc. China. 2006, 16(4), 956–959. DOI: 10.1016/S1003-6326(06)60359-2.
  • Xiao, J.; Li, J.; Xu, Z. Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy. Env. Sci. Tech. 2017, 51(20), 11960–11966. DOI: 10.1021/acs.est.7b02561.
  • Hu, J.; Zhang, J.; Li, H.; Chen, Y.; Wang, C. A Promising Approach for the Recovery of High value-added Metals from Spent lithium-ion Batteries. J. Power Sources. 2017, 351, 192–199. DOI: 10.1016/j.jpowsour.2017.03.093.
  • Yang, Y.; Meng, X.; Cao, H.; Lin, X.; Liu, C.; Sun, Y.; Zhang, Y.; Sun, Z. Selective Recovery of Lithium from Spent Lithium Iron Phosphate Batteries: A Sustainable Process. Green Chem. 2018, 20(13), 3121–3133. DOI: 10.1039/C7GC03376A.
  • Chen, X.; Xu, B.; Zhou, T.; Liu, D.; Hu, H.; Fan, S. Separation and Recovery of Metal Values from Leaching Liquor of mixed-type of Spent lithium-ion Batteries. Sep. Purif. Technol. 2015, 144, 197–205. DOI: 10.1016/j.seppur.2015.02.006.
  • Li, L.; Chen, R.; Zhang, X.; Wu, F.; Ge, J.; Xie, M. Preparation and Electrochemical Properties of re-synthesized LiCoO 2 from Spent lithium-ion Batteries. Chin. Sci. Bull. 2012, 57(32), 4188–4194. DOI: 10.1007/s11434-012-5200-5.
  • Sita, L. E.; da Silvada Silva, S. P.; da Silva, P. R. C.; Scarminio, J. Re-synthesis of LiCoO2 Extracted from Spent Li-ion Batteries with Low and High State of Health. Materials Chem. Phys. 2017, 194, 97–104. DOI: 10.1016/j.matchemphys.2017.03.026.
  • Santana, I.; Moreira, T.; Lelis, M.; Freitas, M. Photocatalytic Properties of Co3O4/LiCoO2 Recycled from Spent lithium-ion Batteries Using Citric Acid as Leaching Agent. Materials Chem. Phys. 2017, 190, 38–44. DOI: 10.1016/j.matchemphys.2017.01.003.
  • Gratz, E.; Sa, Q.; Apelian, D.; Wang, Y. A Closed Loop Process for Recycling Spent Lithium Ion Batteries. J. Power Sources. 2014, 262, 255–262. DOI: 10.1016/j.jpowsour.2014.03.126.
  • Zou, H.; Gratz, E.; Apelian, D.; Wang, Y. A Novel Method to Recycle Mixed Cathode Materials for Lithium Ion Batteries. Green Chem. 2013, 15(5), 1183–1191. DOI: 10.1039/C3GC40182K.
  • Bae, H.; Kim, Y. Technologies of Lithium Recycling from Waste Lithium Ion Batteries: A Review. Materials Adv. 2021, 2, 3234–3250. DOI:10.1039/D1MA00216C.
  • Rosen, M. S. Lithium in Child and Adolescent Bipolar Disorder. American J. Psychiatry Residents’ J. 2017, 12, 3–5. DOI:10.1176/appi.ajp-rj.2017.120202.
  • Gitlin, M. Lithium Side Effects and Toxicity: Prevalence and Management Strategies. Int J. Bipolar Disorders. 2016, 4, 1–10. DOI:10.1186/s40345-016-0068-y.
  • Osman, D.; Cooke, A.; Young, T. R.; Deery, E.; Robinson, N. J.; Warren, M. J. The Requirement for Cobalt in Vitamin B12: A Paradigm for Protein Metalation.BBA Molecular Cell Research. 2021, 1868(1), 118896. doi: 10.1016/j.bbamcr.2020.118896.
  • Pediatrics, A. A. O. Toxic Effects of Cobalt Used in Treatment of Anemia. Pediatrics. 1955, 16(5), 666–666. DOI: 10.1542/peds.16.5.666.
  • Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in humans—A Review of the Potential Sources and Systemic Health Effects. Toxicology. 2017, 387, 43–56. DOI: 10.1016/j.tox.2017.05.015.
  • Bandmann, O.; Weiss, K. H.; Kaler, S. G. Wilson’s Disease and Other Neurological Copper Disorders. Lancet Neurol. 2015, 14(1), 103–113. DOI: 10.1016/S1474-4422(14)70190-5.
  • Wang, Z.; Wei, X.; Yang, J.; Suo, J.; Chen, J.; Liu, X.; Zhao, X. Chronic Exposure to Aluminum and Risk of Alzheimer’s Disease: A meta-analysis. Neurosci. Lett. 2016, 610, 200–206. DOI: 10.1016/j.neulet.2015.11.014.
  • Wacker, W. E.; Vallee, B. L. Nucleic Acids and Metals: I. Chromium, Manganese, Nickel, Iron, and Other Metals in Ribonucleic Acid from Diverse Biological Sources. J. Biol. Chem. 1959, 234(12), 3257–3262. DOI: 10.1016/S0021-9258(18)69661-9.
  • Dwivedi, A.; Tikku, T.; Khanna, R.; Maurya, R. P.; Verma, G.; Murthy, R. Release of Nickel and Chromium Ions in the Saliva of Patients with Fixed Orthodontic Appliance: An in-vivo Study. National J. Maxillofacial Surgery. 2015, 6, 62. DOI:10.4103/0975-5950.168224.
  • Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M. S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Env. Res. Public Health. 2020, 17, 679. DOI:10.3390/ijerph17030679.
  • Avila, D. S.; Puntel, R. L.; Aschner, M. Manganese in Health and Disease. Interrelations between Essential Metal Ions and Human Diseases; Springer: Dordrecht, Germany, 2013; Vol. 13. pp 199–227. DOI: 10.1007/978-94-007-7500-8_7.
  • Zheng, Y.; Long, H.; Zhou, L.; Wu, Z.; Zhou, X.; You, L.; Yang, Y.; Liu, J. Leaching Procedure and Kinetic Studies of Cobalt in Cathode Materials from Spent Lithium Ion Batteries Using Organic Citric Acid as Leachant. Int. J. Env. Res. 2016, 10, 159–168. DOI:10.22059/IJER.2016.56898.
  • Wyrzykowski, D.; Chmurzyński, L. Thermodynamics of Citrate Complexation with Mn2+, Co2+, Ni2+ and Zn2+ Ions. J. Therm. Anal. Cal. 2010, 102, 61–64. DOI:10.1007/s10973-009-0523-4.
  • Smith, R. M.; Martell, A. E. Critical Stability Constants: Second Supplement; Springer: Hedelberg, Germany, 1989. DOI: 10.1007/978-1-4615-6764-6.
  • Golmohammadzadeh, R.; Rashchi, F.; Vahidi, E. Recovery of Lithium and Cobalt from Spent lithium-ion Batteries Using Organic Acids: Process Optimization and Kinetic Aspects. Waste Manag. 2017, 64, 244–254. DOI: 10.1016/j.wasman.2017.03.037.
  • Serjeant, E. P.; Dempsey, B. Ionisation Constants of Organic Acids in Aqueous Solution; Pergamon: New York, USA, 1979; Vol. 23.
  • Cheng, Q. Effect of Different Reductants on Leaching Lithium and Cobalt from Lithium Ion Batteries in Tartaric Acid Solution. in IOP Conference Series: Earth and Environmental Science. 2018. IOP Publishing, Los Angeles, USA. doi: 10.1088/1755-1315/192/1/012007
  • Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R. Fundamentals of Analytical Chemistry; Nelson Education: London, UK, 2013.
  • Li, L.; Zhai, L.; Zhang, X.; Lu, J.; Chen, R.; Wu, F.; Amine, K. Recovery of Valuable Metals from Spent lithium-ion Batteries by ultrasonic-assisted Leaching Process. J. Power Sources. 2014, 262, 380–385. DOI: 10.1016/j.jpowsour.2014.04.013.
  • Dos Santos, C. S.; Alves, J. C.; da Silvada Silva, S. P.; Sita, L. E.; da Silvada Silva, P. R. C.; de Almeida, L. C.; Scarminio, J. A closed-loop Process to Recover Li and Co Compounds and to Resynthesize LiCoO2 from Spent Mobile Phone Batteries. J. Haz. Mat. 2019, 362, 458–466. DOI: 10.1016/j.jhazmat.2018.09.039.
  • Nurqomariah, A.; Fajaryanto, R. Leaching and Kinetics Process of Cobalt from Used Lithium Ion Batteries with Organic Citric Acid. in E3S Web of Conferences. 2018. EDP Sciences, Paris, France. doi: 10.1051/e3sconf/20186703036
  • Zhang, Q.; Yang, X.; Guan, J. Applications of Magnetic Nanomaterials in Heterogeneous Catalysis. Acs Appl. Nano Mater. 2019, 2(8), 4681–4697. DOI: 10.1021/acsanm.9b00976.
  • Pant, D.; Joshi, D.; Upreti, M. K.; Kotnala, R. K. Chemical and Biological Extraction of Metals Present in E Waste: A Hybrid Technology. Waste Manag. 2012, 32(5), 979–990. DOI: 10.1016/j.wasman.2011.12.002.
  • Nayaka, G.; Manjanna, J.; Pai, K.; Vadavi, R.; Keny, S.; Tripathi, V. Recovery of Valuable Metal Ions from the Spent lithium-ion Battery Using Aqueous Mixture of Mild Organic Acids as Alternative to Mineral Acids. Hydrometallurgy. 2015, 151, 73–77. DOI: 10.1016/j.hydromet.2014.11.006.
  • Hariprasad, D.; Dash, B.; Ghosh, M.; Anand, S. Leaching of Manganese Ores Using Sawdust as a Reductant. Minerals Eng. 2007, 20(14), 1293–1295. DOI: 10.1016/j.mineng.2007.07.013.
  • Pagnanelli, F.; Moscardini, E.; Granata, G.; Cerbelli, S.; Agosta, L.; Fieramosca, A.; Toro, L. Acid Reducing Leaching of Cathodic Powder from Spent Lithium Ion Batteries: Glucose Oxidative Pathways and Particle Area Evolution. J. Ind. Eng. Chem. 2014, 20(5), 3201–3207. DOI: 10.1016/j.jiec.2013.11.066.
  • Xuan, W.; Chagnes, A.; Xiao, X.; Olsson, R. T.; Forsberg, K. Antisolvent Precipitation for Metal Recovery from Citric Acid Solution in Recycling of NMC Cathode Materials. Metals. 2022, 12(4), 607. DOI: 10.3390/met12040607.
  • Musariri, B.; Akdogan, G.; Dorfling, C.; Bradshaw, S. Evaluating Organic Acids as Alternative Leaching Reagents for Metal Recovery from Lithium Ion Batteries. Minerals Eng. 2019, 137, 108–117. DOI: 10.1016/j.mineng.2019.03.027.
  • Ruiz-Sánchez, Á.; Lapidus, G. T. Study of Chalcopyrite Leaching from a Copper Concentrate with Hydrogen Peroxide in Aqueous Ethylene Glycol Media. Hydrometallurgy. 2017, 169, 192–200. DOI: 10.1016/j.hydromet.2017.01.014.
  • Zeng, G.; Yao, J.; Liu, C.; Luo, X.; Ji, H.; Mi, X.; Deng, C. Simultaneous Recycling of Critical Metals and Aluminum Foil from Waste LiNi1/3Co1/3Mn1/3O2 Cathode via Ethylene Glycol–Citric Acid System. ACS Sustainable Chem. Eng. 2021, 9(48), 16133–16142. DOI: 10.1021/acssuschemeng.1c04806.
  • Li, L.; Bian, Y.; Zhang, X.; Yao, Y.; Xue, Q.; Fan, E.; Wu, F.; Chen, R. A Green and Effective room-temperature Recycling Process of LiFePO4 Cathode Materials for lithium-ion Batteries. Waste Manag. 2019, 85, 437–444. DOI: 10.1016/j.wasman.2019.01.012.
  • Kumar, J.; Shen, X.; Li, B.; Liu, H.; Zhao, J. Selective Recovery of Li and FePO4 from Spent LiFePO4 Cathode Scraps by Organic Acids and the Properties of the Regenerated LiFePO4. Waste Manag. 2020, 113, 32–40. DOI: 10.1016/j.wasman.2020.05.046.
  • Yao, L.; Yao, H.; Xi, G.; Feng, Y. Recycling and Synthesis of LiNi 1/3 Co 1/3 Mn 1/3 O 2 from Waste Lithium Ion Batteries Using D, l-malic Acid. RSC Adv. 2016, 6(22), 17947–17954. DOI: 10.1039/C5RA25079J.
  • Li, L.; Ge, J.; Chen, R.; Wu, F.; Chen, S.; Zhang, X. Environmental Friendly Leaching Reagent for Cobalt and Lithium Recovery from Spent lithium-ion Batteries. Waste Manag. 2010, 30(12), 2615–2621. DOI: 10.1016/j.wasman.2010.08.008.
  • Cheng, X.; Guo, G.; Cheng, Y.; Liu, M.; Ji, J. Effect of Hydrogen Peroxide on the Recovery of Valuable Metals from Spent LiNi0. 6Co0. 2Mn0. 2O2 Batteries. Energy Technol. 2022, 10(4), 2200039. DOI: 10.1002/ente.202200039.
  • Elomaa, H.; Seisko, S.; Lehtola, J.; Lundström, M. A Study on Selective Leaching of Heavy Metals Vs. Iron from Fly Ash. J. Mat. Cycles Waste Manag. 2019, 21, 1004–1013. DOI:10.1007/s10163-019-00858-w.
  • Yan, Y.; Gao, J.; Wu, J.; Li, B. Effects of Inorganic and Organic Acids on Heavy Metals Leaching in Contaminated Sediment. An Interdisciplinary Response to Mine Water Challenges; China University of Mining and Technology Press: Xuzhou, PRC, 2014.
  • Humar, M.; Pohleven, F.; Šentjurc, M. Effect of Oxalic, Acetic Acid, and Ammonia on Leaching of Cr and Cu from Preserved Wood. Wood Sci. Technol. 2004, 37(6), 463–473. DOI: 10.1007/s00226-003-0220-6.
  • Panina, N.; Belyaev, A.; Simanova, S. Carboxylic Acids and Their Anions. Acid and Ligand Properties. Russian J. General Chem. 2002, 72, 91–94. DOI:10.1023/A:1015353530785.
  • Van Niekerk, J.; Schoening, F. The Crystal Structures of Nickel Acetate, Ni (CH3COO) 2.4 H2O, and Cobalt Acetate, Co (CH3COO) 2.4 H2O. Acta Crystallogr. 1953, 6(7), 609–612. DOI: 10.1107/S0365110X5300171X.
  • Setiawan, H.; Petrus, H. T. B. M.; Perdana, I. Reaction Kinetics Modeling for Lithium and Cobalt Recovery from Spent lithium-ion Batteries Using Acetic Acid. Int. J. Minerals, Metallurgy, and Materials. 2019, 26, 98–107. DOI:10.1007/s12613-019-1713-0.
  • Setiawan, H.; Petrus, H. T.; Perdana, I. A Kinetics Study of Acetic Acid on Cobalt Leaching of Spent LIBs: Shrinking Core Model. in MATEC Web of Conferences. 2018. EDP Sciences, Paris, France. doi: 10.1051/matecconf/201815401033
  • Gao, W.; Song, J.; Cao, H.; Lin, X.; Zhang, X.; Zheng, X.; Zhang, Y.; Sun, Z. Selective Recovery of Valuable Metals from Spent lithium-ion batteries–process Development and Kinetics Evaluation. J. Cleaner Prod. 2018, 178, 833–845. DOI: 10.1016/j.jclepro.2018.01.040.
  • Borsook, H.; Davenport, H. W.; Jeffreys, C. E.; Warner, R. C. The Oxidation of Ascorbic Acid and Its Reduction in Vitro and in Vivo. J. Biol. Chem. 1937, 117(1), 237–279. DOI: 10.1016/S0021-9258(18)74605-X.
  • Hancock, R. D.; Viola, R. Biotechnological Approaches for L-ascorbic Acid Production. TRENDS in Biotechnol. 2002, 20, 299–305. DOI:10.1016/S0167-7799(02)01991-1.
  • Bremus, C.; Herrmann, U.; Bringer-Meyer, S.; Sahm, H. The Use of Microorganisms in L-ascorbic Acid Production. J. Biotechnol. 2006, 124(1), 196–205. DOI: 10.1016/j.jbiotec.2006.01.010.
  • Li, L.; Lu, J.; Ren, Y.; Zhang, X. X.; Chen, R. J.; Wu, F.; Amine, K. Ascorbic-acid-assisted Recovery of Cobalt and Lithium from Spent Li-ion Batteries. J. Power Sources. 2012, 218, 21–27. DOI: 10.1016/j.jpowsour.2012.06.068.
  • Rafsanjani-Abbasi, A.; Rahimi, E.; Shalchian, H.; Vahdati-Khaki, J.; Babakhani, A.; Hosseinpour, S.; Davoodi, A. Recycled Cobalt from Spent Li-ion Batteries as a Superhydrophobic Coating for Corrosion Protection of Plain Carbon Steel. Materials. 2019, 12(1), 90. DOI: 10.3390/ma12010090.
  • Fedje, K. K.; Yillin, L.; Strömvall, A.-M. Remediation of Metal Polluted Hotspot Areas through Enhanced Soil washing–evaluation of Leaching Methods. J. Env. Manag. 2013, 128, 489–496. DOI: 10.1016/j.jenvman.2013.05.056.
  • Tang, J.; Valix, M. Leaching of Low Grade Limonite and Nontronite Ores by Fungi Metabolic Acids. Miner. Eng. 2006, 19(12), 1274–1279. DOI: 10.1016/j.mineng.2006.04.009.
  • Li, L.; Fan, E.; Guan, Y.; Zhang, X.; Xue, Q.; Wei, L.; Wu, F.; Chen, R. Sustainable Recovery of Cathode Materials from Spent lithium-ion Batteries Using Lactic Acid Leaching System. ACS Sustainable Chem. Eng. 2017, 5(6), 5224–5233. DOI: 10.1021/acssuschemeng.7b00571.
  • Martinez, F. A. C.; Balciunas, E. M.; Salgado, J. M.; González, J. M. D.; Converti, A.; de Souza Oliveira, R. P. Lactic Acid Properties, Applications and Production: A Review. Trends Food Sci. Technol. 2013, 30(1), 70–83. DOI: 10.1016/j.tifs.2012.11.007.
  • Roshanfar, M.; Golmohammadzadeh, R.; Rashchi, F. An Environmentally Friendly Method for Recovery of Lithium and Cobalt from Spent lithium-ion Batteries Using Gluconic and Lactic Acids. J. Env. Chem. Eng. 2019, 7(1), 102794. DOI: 10.1016/j.jece.2018.11.039.
  • He, L.-P.; Sun, S.-Y.; Mu, -Y.-Y.; Song, X.-F.; Yu, J.-G. Recovery of Lithium, Nickel, Cobalt, and Manganese from Spent lithium-ion Batteries Using L-tartaric Acid as a Leachant. ACS Sustainable Chem. Eng. 2017, 5(1), 714–721. DOI: 10.1021/acssuschemeng.6b02056.
  • Sohn, J. S.; Shin, S. M.; Yang, D. H.; Kim, S. K.; Lee, C. K. Comparison of Two Acidic Leaching Processes for Selecting the Effective Recycle Process of Spent Lithium Ion. Geosystem Engineering. 2006, 9(1), 1–6. doi: 10.1080/12269328.2006.10541246.
  • Zhang, X.; Cao, H.; Xie, Y.; Ning, P.; An, H.; You, H.; Nawaz, F. A closed-loop Process for Recycling LiNi1/3Co1/3Mn1/3O2 from the Cathode Scraps of lithium-ion Batteries: Process Optimization and Kinetics Analysis. Sep. Purif. Technol. 2015, 150, 186–195. DOI: 10.1016/j.seppur.2015.07.003.
  • Chen, X.; Fan, B.; Xu, L.; Zhou, T.; Kong, J. An atom-economic Process for the Recovery of High value-added Metals from Spent lithium-ion Batteries. J. Cleaner Prod. 2016, 112, 3562–3570. DOI: 10.1016/j.jclepro.2015.10.132.
  • Chen, X.; Kang, D.; Cao, L.; Li, J.; Zhou, T.; Ma, H. Separation and Recovery of Valuable Metals from Spent Lithium Ion Batteries: Simultaneous Recovery of Li and Co in a Single Step. Sep. Purif. Technol. 2019, 210, 690–697. DOI: 10.1016/j.seppur.2018.08.072.
  • Chen, X.; Kang, D.; Li, J.; Zhou, T.; Ma, H. Gradient and Facile Extraction of Valuable Metals from Spent Lithium Ion Batteries for New Cathode Materials re-fabrication. J. Haz. Mat. 2020, 389, 121887. DOI: 10.1016/j.jhazmat.2019.121887.
  • Sharma, S.; Zapatero-Rodríguez, J.; Saxena, R.; O’Kennedy, R.; Srivastava, S. Ultrasensitive Direct Impedimetric Immunosensor for Detection of Serum HER2. Biosens. Bioelectron. 2018, 106, 78–85. DOI: 10.1016/j.bios.2018.01.056.
  • Li, Q.; Fung, K. Y.; Xu, L.; Wibowo, C.; Ng, K. M. Process Synthesis: Selective Recovery of Lithium from Lithium-Ion Battery Cathode Materials. Ind. Eng. Chem. Res. 2019, 58(8), 3118–3130. DOI: 10.1021/acs.iecr.8b04899.
  • Li, L.; Qu, W.; Zhang, X.; Lu, J.; Chen, R.; Wu, F.; Amine, K. Succinic acid-based Leaching System: A Sustainable Process for Recovery of Valuable Metals from Spent Li-ion Batteries. J. Power Sources. 2015, 282, 544–551. DOI: 10.1016/j.jpowsour.2015.02.073.
  • Zheng, Y.; Song, W.; Mo, W.-T.; Zhou, L.; Liu, J.-W. Lithium Fluoride Recovery from Cathode Material of Spent lithium-ion Battery. RSC Adv. 2018, 8(16), 8990–8998. DOI: 10.1039/C8RA00061A.
  • Fu, Y.; He, Y.; Chen, H.; Ye, C.; Lu, Q.; Li, R.; Xie, W.; Wang, J. Effective Leaching and Extraction of Valuable Metals from Electrode Material of Spent lithium-ion Batteries Using Mixed Organic Acids Leachant. J. Ind. Eng. Chem. 2019, 79, 154–162. DOI: 10.1016/j.jiec.2019.06.023.
  • Ji, G.; Ou, X.; Zhao, R.; Zhang, J.; Zou, J.; Li, P.; Peng, D.; Ye, L.; Zhang, B.; He, D. Efficient Utilization of Scrapped LiFePO4 Battery for Novel Synthesis of Fe2P2O7/C as Candidate Anode Materials. Resources. Conservation and Recycling. 2021, 174, 105802. DOI: 10.1016/j.resconrec.2021.105802.
  • Wang, B.; Lin, X.-Y.; Tang, Y.; Wang, Q.; Leung, M. K.; Lu, X.-Y. Recycling LiCoO2 with Methanesulfonic Acid for Regeneration of lithium-ion Battery Electrode Materials. J. Power Sources. 2019, 436, 226828. DOI: 10.1016/j.jpowsour.2019.226828.
  • He, K.; Zhang, Z.-Y.; Zhang, F.-S. Selectively Peeling of Spent LiFePO4 Cathode by Destruction of Crystal Structure and Binder Matrix for Efficient Recycling of Spent Battery Materials. J. Haz. Mat. 2020, 386, 121633. DOI: 10.1016/j.jhazmat.2019.121633.
  • Du, K.-D.; Meng, Y.-F.; Zhao, -X.-X.; Wang, X.-T.; Luo, -X.-X.; Zhang, W.; Wu, X.-L. A Unique co-recovery Strategy of Cathode and Anode from Spent LiFePO4 Battery. Sci. China Mater. 2022, 65(3), 637–645. DOI: 10.1007/s40843-021-1772-6.
  • Jiang, Y.; Chen, X.; Yan, S.; Li, S.; Zhou, T. Pursuing Green and Efficient Process Towards Recycling of Different Metals from Spent lithium-ion Batteries through Ferro-chemistry. Chem. Eng. J. 2021, 426, 131637. DOI: 10.1016/j.cej.2021.131637.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.