395
Views
3
CrossRef citations to date
0
Altmetric
Review

Hydrophilic Chelators for Aqueous Reprocessing of Spent Nuclear Fuel

ORCID Icon, ORCID Icon & ORCID Icon
Pages 119-137 | Received 07 Dec 2022, Accepted 05 Feb 2023, Published online: 02 Mar 2023

References

  • Moyer, B. A.; Lumetta, G. J.; Mincher, B. J. 11 - Minor Actinide Separation in the Reprocessing of Spent Nuclear Fuels: Recent Advances in the United States. In Reprocessing and Recycling of Spent Nuclear Fuel, Taylor, R., Ed.; Woodhead Publishing: Oxford, 2015; pp 289–312. DOI: 10.1016/B978-1-78242-212-9.00011-3.
  • McClure, J. Estimation of the Westinghouse 17x17 Mox SNF Assembly Weight. United States Department of Energy. 1998. DOI: 10.2172/889278
  • Benedict, M.; Pigford, T. H.; Levi, H. W. Nuclear Chemical Engineering; McGraw-Hill Education: New York, USA, 1981.
  • Geist, A.; Adnet, J.-M.; Bourg, S.; Ekberg, C.; Galán, H.; Guilbaud, P.; Miguirditchian, M.; Modolo, G.; Rhodes, C.; Taylor, R. An Overview of Solvent Extraction Processes Developed in Europe for Advanced Nuclear Fuel Recycling, Part 1—heterogeneous Recycling. Sep. Sci. Technol. 2021, 56, 1866–1881.
  • Van den Eynde, G.; Trtilek, R.; Fritz, L.; Evans, C.; Mathonniere, G.; Van der Werf, J.; Lucibello, P.; Suzuki, K.; Sano, T. Takeda, Strategies and Considerations for the Back End of the Fuel Cycle; Paris, France: Organisation for Economic Co-Operation and Development, 2021.
  • Nash, K. L.; Lumetta, G. J. Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment; Amsterdam, Netherlands: Elsevier Science, 2011. https://books.google.com/books?id=z4xwAgAAQBAJ 23 March 2020
  • Na, C.; Yamagishi, I.; Choi, Y.-J.; Glatz, J.-P.; Hyland, B.; Uhlir, J.; Baron, P.; Warin, D.; De Angelis, G.; Luce, A., et al. Spent Nuclear Fuel Reprocessing Flowsheet. A Report by the WPFC Expert Group on Chemical Partitioning of the NEA Nuclear Science Committee; Paris, France: Organisation for Economic Co-Operation and Development, 2012.
  • Taylor, R.;. Ed. Woodhead Publishing Series in Energy. In Reprocessing and Recycling of Spent Nuclear Fuel, Woodhead Publishing: Oxford. 2015; pp. xvii–xx. Doi:10.1016/B978-1-78242-212-9.09986-X.
  • Horwitz, E. P.; Kalina, D. C.; Diamond, H.; Vandegrift, G. F.; Schulz, W. W. The TRUEX Process - A Process for the Extraction of the Transuranic Elements from Nitric Acid in Wastes Utilizing Modified PUREX Solvents. Solvent Extr. Ion Exch. 1985, 3, 75–109. DOI: 10.1080/07366298508918504.
  • Law, J. D.; Brewer, K. N.; Herbst, R. S.; Todd, T. A. Demonstration of the TRUEX Process for Partitioning of Actinides from Actual ICPP Tank Waste Using Centrifugal Contactors in a Shielded Cell Facility. Lockheed Martin Idaho Technologies Co.: United States, 1996. http://inis.iaea.org/search/search.aspx?orig_q=RN:28038018 07 June 2021
  • Romanovskiy, V. N.; Smirnov, I. V.; Babain, V. A.; Yu, A. Shadrin, 9 - Combined Processes for High Level Radioactive Waste Separations: UNEX and Other Extraction Processes. In Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment, Nash, K. L., Lumetta, G. J., Eds.; Woodhead Publishing: Sawston, United Kingdom, 2011; pp 229–265. DOI: 10.1533/9780857092274.2.229.
  • Sharrad, C. A.; Whittaker, D. M. 7 - the Use of Organic Extractants in Solvent Extraction Processes in the Partitioning of Spent Nuclear Fuels. In Reprocessing and Recycling of Spent Nuclear Fuel, Taylor, R., Ed.; Woodhead Publishing: Sawston, United Kingdom, 2015; pp 153–189. DOI: 10.1016/B978-1-78242-212-9.00007-1.
  • Guoan, Y.; Taihong, Y. 20 - Development of Closed Nuclear Fuel Cycles in China. In Reprocessing and Recycling of Spent Nuclear Fuel, Taylor, R., Ed.; Woodhead Publishing: Sawston, United Kingdom, 2015; pp 531–548. DOI: 10.1016/B978-1-78242-212-9.00020-4.
  • Modolo, G.; Geist, A.; Miguirditchian, M. 10 - Minor Actinide Separations in the Reprocessing of Spent Nuclear Fuels: Recent Advances in Europe. In Reprocessing and Recycling of Spent Nuclear Fuel, Taylor, R., Ed.; Woodhead Publishing: Sawston, United Kingdom, 2015; pp 245–287. DOI: 10.1016/B978-1-78242-212-9.00010-1.
  • Nash, K. L. The Chemistry of TALSPEAK: A Review of the Science. Solvent Extr. Ion Exch. 2015, 33, 1–55. DOI: 10.1080/07366299.2014.985912.
  • Nilsson, M.; Nash, K. L. TALSPEAK Chemistry in Advanced Nuclear Fuel Cycles. ATALANTE 2008 .CEA Marcoule, DEN/UCCAP, BP 17171, F-30207 Bagnols-sur-Ceze cedex (France). 2008. https://www.osti.gov/etdeweb/servlets/purl/21154070 25 Jan 2022
  • Johnson, A. T.; Nash, K. L. Mixed Monofunctional Extractants for Trivalent Actinide/Lanthanide Separations: TALSPEAK-MME. Solvent Extr. Ion Exch. 2015, 33, 642–655. DOI: 10.1080/07366299.2015.1085225.
  • Braley, J. C.; Carter, J. C.; Sinkov, S. I.; Nash, K. L.; Lumetta, G. J. The Role of Carboxylic Acids in TALSQuEAK Separations, J. Coord. Chem. 65 (2012) 2862–2876 19 May 2020. DOI:10.1080/00958972.2012.704551.
  • Collins, E. D.; DelCul, G. D.; Spencer, B. B. et al State-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry. Nucl Energy Agency OECD. 2018. http://inis.iaea.org/search/search.aspx?orig_q=RN: 07 June 2021
  • Burney, G. A. Separation of Americium from Curium by Precipitation of K3AmO2(CO3)2. Nucl. Appl. 1968, 4, 217–221. DOI: 10.13182/NT68-A26319.
  • Modolo, G.; Kluxen, P.; Geist, A. Demonstration of the LUCA Process for the Separation of americium(III) from curium(III), californium(III), and lanthanides(III) in Acidic Solution Using a Synergistic Mixture of Bis(chlorophenyl)dithiophosphinic Acid and Tris(2-ethylhexyl)phosphate. Radiochim. Acta. 2010, 98. DOI: 10.1524/ract.2010.1708.
  • Morita, Y.; Yamaguchi, I.; Fujiwara, T.; Koizumi, H.; Tachimori, S. A demonstration test of 4-group partitioning process with real high-level liquid waste. International conference Scientific research on the back-end of the fuel cycle for the 21st century. 30 - Marcoule (France): Atalante, 2000. https://www.osti.gov/etdeweb/servlets/purl/20176399 20 Jan 2022
  • Koma, Y.; Watanabe, M.; Nemoto, S.; Tanaka, Y. A Counter Current Experiment for the Separation of Trivalent Actinides and Lanthanides by the Setfics Process. Solvent Extr. Ion Exch. 1998, 16, 1357–1367 13 Jan 2023. 10.1080/07366299808934584.
  • Shadrin, A.; Babain, V.; Kamachev, V.; Koyama, T.; Kamiya, M. 2003. New Orleans, LA: American Nuclear Society (ANS); pp 728–731.
  • Shoichi, T.; Yuji, S.; Yasuji, M.; Shin-ichi, S. Recent Progress of Partitioning Process in JAERI: Development of amide-based Artist Process; Paris, France: Organisation for Economic Co-Operation and Development - Nuclear Energy Agency, Nuclear Energy Agency of the OECD (NEA), 2003. http://inis.iaea.org/search/search.aspx?orig_q=RN:34085586 20 Jan 2022
  • Zhang, H. China Is Speeding up Its Plutonium Recycling Programs. Null. 2020, 76, 210–216 20 Jan 2022. 10.1080/00963402.2020.1778372.
  • Zhu, Z.-X.; Sasaki, Y.; Suzuki, H.; Suzuki, S.; Kimura, T. Cumulative Study on Solvent Extraction of Elements by N,N,N′,N′-tetraoctyl-3-oxapentanediamide (TODGA) from Nitric Acid into n-dodecane. Anal. Chim. Acta. 2004, 527, 163–168. DOI: 10.1016/j.aca.2004.09.023.
  • Veliscek-Carolan, J. Separation of Actinides from Spent Nuclear Fuel: A Review. J. Hazard. Mater. 2016, 318, 266–281. DOI: 10.1016/j.jhazmat.2016.07.027.
  • Wei, M.; Liu, X.; Chen, J. Agents and Processes Design for Transuranium Elements Back Extraction in TRPO Process. J. Radioanal. Nucl. Chem. 2012, 291, 717–723. DOI: 10.1007/s10967-012-1623-3.
  • Jianchen, W.; Chongli, S. Hot Test of Trialkyl Phosphine Oxide (Trpo) for Removing Actinides from Highly Saline High-Level Liquid Waste (Hllw). Solvent Extr. Ion Exch. 2001, 19, 231–242. DOI: 10.1081/SEI-100102693.
  • Grimes, T. S.; Heathman, C. R.; Jansone-Popova, S.; Bryantsev, V. S.; Goverapet Srinivasan, S.; Nakase, M.; Zalupski, P. R. Thermodynamic, Spectroscopic, and Computational Studies of f-Element Complexation by N-Hydroxyethyl-diethylenetriamine-N,N′,N″,N″-tetraacetic Acid. Inorg. Chem. 2017, 56, 1722–1733. DOI: 10.1021/acs.inorgchem.6b02897.
  • Babain, V.; Smirnov, I.; Alyapyshev, M.; Todd, T. A.; Law, J. D.; Herbst, R. S.; Paulenova, A. Radionuclide Partitioning in the Modified Unex Process, Canadian Institute of Mining, Metallurgy and Petroleum, Canada, 2008. http://inis.iaea.org/search/search.aspx?orig_q=RN:40096082 22 Jan 2022.
  • Runde, W.; Brodnax, L. F.; Goff, G.; Bean, A. C.; Scott, B. L. Directed Synthesis of Crystalline Plutonium(III) and (IV) Oxalates: Accessing Redox-Controlled Separations in Acidic Solutions. Inorg. Chem. 2009, 48, 5967–5972. DOI: 10.1021/ic900344u.
  • Zhu, Y.; Jiao, R. Chinese Experience in the Removal of Actinides from Highly Active Waste by Trialkylphosphine-Oxide Extraction. Nucl. Technol. 1994, 108, 361–369. DOI: 10.13182/NT94-A35018.
  • Lumetta, G. J.; Gelis, A. V.; Carter, J. C.; Niver, C. M.; Smoot, M. R. The Actinide-Lanthanide Separation Concept. Solvent Extr. Ion Exch. 2014, 32, 333–347. DOI: 10.1080/07366299.2014.895638.
  • Gibson, J. K.; de Jong, W. A. Experimental and Theoretical Approaches to Actinide Chemistry; Hoboken, United States: John Wiley & Sons, 2018. https://books.google.com/books?id=YKZFDwAAQBAJ 30 May 2020
  • Heathman, C. R.; Nash, K. L. Characterization of Europium and Americium Dipicolinate Complexes. Sep. Sci. Technol. 2012, 47, 2029–2037. DOI: 10.1080/01496395.2012.704225.
  • Knights, R. L. Aqueous Citrate for Plutonium–Uranium Processing. United States: United States Department of Energy, 1968. DOI:10.2172/4826994.
  • Wang, Y.; Deblonde, G. J.-P.; Abergel, R. J. Hydroxypyridinone Derivatives: A Low-pH Alternative to Polyaminocarboxylates for TALSPEAK-like Separation of Trivalent Actinides from Lanthanides. ACS Omega. 2020. DOI: 10.1021/acsomega.0c00873.
  • Zalupski, P. R.; Grimes, T. S.; Pilgrim, C. D.; Heathman, C. R.; Jansone-Popova, S.; Johnson, K. R.; Bryantsev, V.; Chapleski, R. C. 2021. Chapter 320 - Aminopolycarboxylates in Trivalent f-element Separations. In Handbook on the Physics and Chemistry of Rare Earths, Bünzli, J.-C. G., Pecharsky, V. K., Eds., 1–162. Amsterdam, Netherlands: Elsevier. DOI: 10.1016/bs.hpcre.2021.06.002.
  • Law, J. D.; Herbst, R. S.; Peterman, D. R.; Todd, T. A.; Romanovskiy, V. N.; Babain, V. A.; Smirnov, I. V. Development of a Regenerable Strip Reagent for Treatment of Acidic, Radioactive Waste with Cobalt Dicarbollide‐based Solvent Extraction Processes. Solvent Extr. Ion Exch. 2005, 23, 59–83. DOI: 10.1081/SEI-200044377.
  • Vigneau, O.; Pinel, C.; Lemaire, M. Ionic Imprinted Resins Based on EDTA and DTPA Derivatives for lanthanides(III) Separation. Anal. Chim. Acta. 2001, 435, 75–82. DOI: 10.1016/S0003-2670(00)01279-4.
  • Gelis, A. V.; Vandegrift, G. F.; Bakel, A.; Bowers, D. L.; Hebden, A. S.; Pereira, C.; Regalbuto, M. Extraction Behaviour of Actinides and Lanthanides in TALSPEAK, TRUEX and NPEX Processes of UREX+. Radiochim. Acta. 2009, 97(4–5), 231–232. DOI: 10.1524/ract.2009.1601.
  • Lumetta, G. J.; Gelis, A. V.; Braley, J. C.; Carter, J. C.; Pittman, J. W.; Warner, M. G.; Vandegrift, G. F. The TRUSPEAK Concept: Combining CMPO and HDEHP for Separating Trivalent Lanthanides from the Transuranic Elements. Null. 2013, 31, 223–236. DOI: 10.1080/07366299.2012.670595.
  • Gelis, A. V.; Lumetta, G. J. Actinide Lanthanide Separation Process—ALSEP. Ind. Eng. Chem. Res. 2014, 53(4), 1624–1631. DOI: 10.1021/ie403569e.
  • Gelis, A. V.; Kozak, P.; Breshears, A. T.; Brown, M. A.; Launiere, C.; Campbell, E. L.; Hall, G. B.; Levitskaia, T. G.; Holfeltz, V. E.; Lumetta, G. J. Closing the Nuclear Fuel Cycle with a Simplified Minor Actinide Lanthanide Separation Process (ALSEP) and Additive Manufacturing. Sci. Rep. 2019, 9(1). DOI: 10.1038/s41598-019-48619-x.
  • Mendes, M.; Leguay, S.; Le Naour, C.; Hamadi, S.; Roques, J.; Moisy, P.; Guillaumont, D.; Topin, S.; Aupiais, J.; Den Auwer, C., et al. Thermodynamic Study of the Complexation of Protactinium(V) with Diethylenetriaminepentaacetic Acid. Inorg. Chem. 2013, 52, 7497–7507. DOI: 10.1021/ic400378t.
  • Smith, R. M.; Martell, A. E. Critical Stability Constants, Enthalpies and Entropies for the Formation of Metal Complexes of Aminopolycarboxylic Acids and Carboxylic Acids. Sci. Total Environ. 1987, 64, 125–147. DOI: 10.1016/0048-9697(87)90127-6.
  • Lumetta, G. J.; Levitskaia, T. G.; Wilden, A.; Casella, A. J.; Hall, G. B.; Lin, L.; Sinkov, S. I.; Law, J. D.; Modolo, G. An Advanced TALSPEAK Concept for Separating Minor Actinides. Part 1. Process Optimization and Flowsheet Development, Solvent Extr. Ion Exch. 35 (2017) 377–395 05 Aug 2019. DOI:10.1080/07366299.2017.1368901.
  • Drader, J. A.; Luckey, M.; Braley, J. C. Thermodynamic Considerations of Covalency in Trivalent Actinide-(poly)aminopolycarboxylate Interactions, Null. 34 (2016) 114–125 28 Apr 2021. DOI:10.1080/07366299.2016.1140436.
  • Baybarz, R. D. Dissociation Constants of the Transplutonium Element Chelates of diethylenetriaminepenta-acetic Acid (DTPA) and the Application of DTPA Chelates to Solvent Extraction Separations of Transplutonium Elements from the Lanthanide Elements. J. Inorg. Nucl. Chem. 1965, 27, 1831–1839. DOI: 10.1016/0022-1902(65)80327-X.
  • Chen, J.-F.; Choppin, G. R.; Moore, R. C. Complexation and Ion Interactions in Am(III)/EDTA/NaCl Ternary System. In Actinide Speciation in High Ionic Strength Media: Experimental and Modeling Approaches to Predicting Actinide Speciation and Migration in the Subsurface, Reed, D. T., Clark, S. B., Rao, L., Eds.; Springer: Boston, MA, 1999; pp 187–197. DOI: 10.1007/978-1-4419-8690-0_12.
  • Choppin, G. R.; Rizkalla, E. N.; Sullivan, J. C. Calorimetric Studies of Curium Complexation. 2. Amino Carboxylates. Inorg. Chem. 1987, 26, 2318–2320. DOI: 10.1021/ic00261a030.
  • Powell, J. E.; Mackey, J. L. Determination of the Rare Earth-HEDTA Stability Constants by the Mercury Electrode Method, Inorg. Chem. 1962, 1, 418–421. DOI: 10.1021/ic50002a045.
  • Mackey, J. L. A study of the rare-earth chelate stability constants of some aminopolyacetic acids, Iowa, US: Iowa State University, 1960 .
  • Sinkov, S.; Choppin, G. Acetohydroxamic Acid Complexes with Trivalent f-Block Metal Cations. Null. 2002, 39, 359–362. DOI: 10.1080/00223131.2002.10875483.
  • Sinkov, S. I.; Choppin, G. R.; Taylor, R. J. Spectrophotometry and Luminescence Spectroscopy of Acetohydroxamate Complexes of Trivalent Lanthanide and Actinide Ions. J. Solution Chem. 2007, 36, 815–830. DOI: 10.1007/s10953-007-9149-y.
  • Kelley, M. P.; Bessen, N. P.; Su, J.; Urban, M.; Sinkov, S. I.; Lumetta, G. J.; Batista, E. R.; Yang, P.; Shafer, J. C. Revisiting Complexation Thermodynamics of Transplutonium Elements up to Einsteinium. Chem. Commun. 2018, 54, 10578–10581. DOI: 10.1039/C8CC05230A.
  • Sasaki, Y.; Morita, K.; Matsumiya, M.; Nakase, M. Simultaneous Separation of Am and Cm from Nd and Sm by multi-step Extraction Using the TODGA-DTPA-BA-HNO3 System. Radiochim. Acta. 2020, 1. DOI: 10.1515/ract-2019-3215.
  • Grimes, T. S.; Heathman, C. R.; Jansone-Popova, S.; Ivanov, A. S.; Roy, S.; Bryantsev, V. S.; Zalupski, P. R. Influence of a Heterocyclic Nitrogen-Donor Group on the Coordination of Trivalent Actinides and Lanthanides by Aminopolycarboxylate Complexants, Inorg. Chem. 2018, 57, 1373–1385. DOI: 10.1021/acs.inorgchem.7b02792.
  • Heathman, C. R.; Grimes, T. S.; Zalupski, P. R. Coordination Chemistry and f-Element Complexation by Diethylenetriamine-N,N″-bis(acetylglycine)-N,N′,N″-triacetic Acid. Inorg. Chem. 2016, 55, 11600–11611. DOI: 10.1021/acs.inorgchem.6b02158.
  • Braley, J. C.; Grimes, T. S.; Nash, K. L. Alternatives to HDEHP and DTPA for Simplified TALSPEAK Separations. Ind. Eng. Chem. Res. 2012, 51, 629–638. DOI: 10.1021/ie200285r.
  • Heres, X.; Baron, P.; Hill, C.; Ameil, E.; Martinez, I.; Rivalier, P. In , Marcoule, C. E. A. Ed. CEA Marcoule, DEN/UCCAP, BP 17171, F-30207 Bagnols-sur-Ceze cedex (France), The separation of extractants implemented in the DIAMEX-SANEX process. ATALANTE 2008. 2008. https://www.osti.gov/etdeweb/servlets/purl/21121115 20 Jan 2022
  • Flora, S. J. S.; Pachauri, V. Chelation in Metal Intoxication. Int. J. Environ. Res. Public Health. 2010, 7, 2745–2788. DOI: 10.3390/ijerph7072745.
  • Hofman, M.; Binns, D.; Johnston, V.; Siva, S.; Thompson, M.; Eu, P.; Collins, M.; Hicks, R. J. 68Ga-EDTA PET/CT Imaging and Plasma Clearance for Glomerular Filtration Rate Quantification: Comparison to Conventional 51Cr-EDTA. J. Nucl. Med. 2015, 56, 405. DOI: 10.2967/jnumed.114.147843.
  • Nash, K. L.; Brigham, D.; Shehee, T. C.; Martin, A. The Kinetics of Lanthanide Complexation by EDTA and DTPA in Lactate Media. Dalton Trans. 2012, 41, 14547–14556. DOI: 10.1039/C2DT31851B.
  • Okemgbo, A. A.; Hill, H. H.; Metcalf, S. G.; Bachelor, M. Metal Ion Interferences in Reverse Polarity Capillary Zone Electrophoretic Analysis of Hanford Defense Waste for Ethylenediaminetetraacetic Acid (EDTA) and n-hydroxyethylethylenediaminetriacetic Acid (HEDTA). Anal. Chim. Acta. 1999, 396, 105–116. DOI: 10.1016/S0003-2670(99)00449-3.
  • Lee, C.-S.; Wang, Y.-M.; Cheng, W.-L.; Ting, G. Chemical Study on the Separation and Purification of Promethium-147. J Radioanal Nucl Chem Art. 1989, 130, 21–37. DOI: 10.1007/BF02037697.
  • Toste, A. P.; Polach, K. J.; Ohnuki, T. Fuel Cycle and Nuclear Waste: Chemodynamics of EDTA in a Simulated, Mixed Waste: Chemo-degradation Vs. gamma-radiolysis. J. Radioanal. Nucl. Chem. 2005, 263, 559–565. DOI: 10.1007/s10967-005-0624-x.
  • Toste, A. Gamma Radiolysis of EDTA in a Simulated, Mixed Nuclear Waste. J. Radioanal. Nucl. Chem. 2006, 235, 213–219. DOI: 10.1007/bf02385964.
  • Sypula, M.; Wilden, A.; Schreinemachers, C.; Malmbeck, R.; Geist, A.; Taylor, R.; Modolo, G. Use of Polyaminocarboxylic Acids as Hydrophilic Masking Agents for Fission Products in Actinide Partitioning Processes. Solvent Extr. Ion Exch. 2012, 30, 748–764. DOI: 10.1080/07366299.2012.700591.
  • Wheelwright, E. J.; Roberts, F. P.; Bray, L. A. Simultaneous recovery and purification OF Pm, Am, AND Cm BY the use of alternating dtpa and nta cation-exchange flowsheets., Battelle-Northwest, Richland, Wash. Pacific Northwest Lab.; 1968. DOI:10.2172/4771799.
  • Bhattacharyya, A.; Mohapatra, P. K.; Kanekar, A. S.; Dai, K.; Egberink, R. J. M.; Huskens, J.; Verboom, W. Combined Experimental and Density Functional Theoretical Studies of Am3+ and Eu3+ Extraction and Complexation with Different Nitrilotriacetamide (NTA) Derivatives. ChemistrySelect. 2020, 5, 3374–3384. DOI: 10.1002/slct.201904393.
  • Wilden, A.; Kowalski, P. M.; Klaß, L.; Kraus, B.; Kreft, F.; Modolo, G.; Li, Y.; Rothe, J.; Dardenne, K.; Geist, A., et al. Unprecedented Inversion of Selectivity and Extraordinary Difference in the Complexation of Trivalent F Elements by Diastereomers of a Methylated Diglycolamide. Chem. Eur. J. 2019, 25, 5507–5513. DOI: 10.1002/chem.201806161.
  • Marie, C.; Kaufholz, P.; Vanel, V.; Duchesne, M.-T.; Russello, E.; Faroldi, F.; Baldini, L.; Casnati, A.; Wilden, A.; Modolo, G., et al. Development of a Selective Americium Separation Process Using H4TPAEN as Water-Soluble Stripping Agent. Solvent Extr. Ion Exch. 2019, 37, 313–327. DOI: 10.1080/07366299.2019.1643569.
  • Alyapyshev, M.; Babain, V.; Blazheva, I.; Eliseev, I.; Logunov, M.; Murzin, A.; Fedorov, Y. Method Of Processing Irradiated Nuclear Fuel, RU patent 2540342, 2015.
  • Rao, L.; Tian, G.; Teat, S. J. Complexation of Np(V) with N,N-dimethyl-3-oxa-glutaramic Acid and Related Ligands: Thermodynamics, Optical Properties and Structural Aspects. Dalton Trans. 2010, 39, 3326–3330. DOI: 10.1039/B922851A.
  • Lehman-Andino, I.; Su, J.; Papathanasiou, K. E.; Eaton, T. M.; Jian, J.; Dan, D.; Albrecht-Schmitt, T. E.; Dares, C. J.; Batista, E. R.; Yang, P., et al. Soft-donor Dipicolinamide Derivatives for Selective Actinide(iii)/lanthanide(iii) Separation: The Role of S- Vs. O-donor Sites. Chem. Commun. 2019, 55, 2441–2444. DOI: 10.1039/C8CC07683A.
  • Aneheim, E.; Ekberg, C. Aqueous Complexation of Palladium to Prevent Precipitation and Extraction in a Group Actinide Extraction System. Hydrometallurgy. 2012, 115–116, 71–76. DOI: 10.1016/j.hydromet.2011.12.018.
  • Grüner, B.; Rais, J.; Selucký, P.; Lucˇaníková, M. . Boron Science. 2011, 463.
  • Ozawa, M.; Suzuki, T.; Koyama, S.; Akatsuka, H.; Mimura, H.; Fujii, Y. A New back-end Cycle Strategy for Enhancing Separation, Transmutation and Utilization of Materials (Adv.-orient Cycle). Prog. Nucl. Energy. 2008, 50, 476–482. DOI: 10.1016/j.pnucene.2007.11.061.
  • Geist, A.; Hill, C.; Modolo, G.; Foreman, M. R. S. J.; Weigl, M.; Gompper, K.; Hudson, M. J. 6,6′‐Bis(5,5,8,8‐tetramethyl‐5,6,7,8‐tetrahydro‐benzo[1,2,4]triazin‐3‐yl) [2,2′]bipyridine, an Effective Extracting Agent for the Separation of Americium(III) and Curium(III) from the Lanthanides. Solvent Extr. Ion Exch. 2006, 24, 463–483. DOI: 10.1080/07366290600761936.
  • Wilden, A.; Modolo, G.; Kaufholz, P.; Sadowski, F.; Lange, S.; Sypula, M.; Magnusson, D.; Müllich, U.; Geist, A.; Bosbach, D. Laboratory-Scale Counter-Current Centrifugal Contactor Demonstration of an Innovative-SANEX Process Using a Water Soluble BTP. Solvent Extr. Ion Exch. 2015, 33, 91–108. DOI: 10.1080/07366299.2014.952532.
  • Geist, A.; Müllich, U.; Magnusson, D.; Kaden, P.; Modolo, G.; Wilden, A.; Zevaco, T. Actinide(III)/Lanthanide(III) Separation via Selective Aqueous Complexation of Actinides(III) Using a Hydrophilic 2,6-Bis(1,2,4-Triazin-3-Yl)-Pyridine in Nitric Acid. Null. 2012, 30, 433–444. DOI: 10.1080/07366299.2012.671111.
  • Carrott, M.; Geist, A.; Hères, X.; Lange, S.; Malmbeck, R.; Miguirditchian, M.; Modolo, G.; Wilden, A.; Taylor, R. Distribution of Plutonium, Americium and Interfering Fission Products between Nitric Acid and a Mixed Organic Phase of TODGA and DMDOHEMA in Kerosene, and Implications for the Design of the “EURO-GANEX” Process. Hydrometallurgy. 2015, 152, 139–148. DOI: 10.1016/j.hydromet.2014.12.019.
  • Geist, A.; Panak, P. J. Recent Progress in Trivalent Actinide and Lanthanide Solvent Extraction and Coordination Chemistry with Triazinylpyridine N Donor Ligands. Solvent Extr. Ion Exch. 2021, 39, 128–151. DOI: 10.1080/07366299.2020.1831235.
  • Labb, S. A.; Masteran, C. J.; Albright, S. G.; Ali, B.; Chapman, H. A.; Cheng, Y.; Cusic, R. M.; Hartlove, N. B.; Marr, A. N.; Timmons, M., et al. Synthesis of a Water-Soluble, Soft N-Donor BTzBP Ligand Containing Only CHON. Synlett. 2020, 31, 1384–1388. DOI: 10.1055/s-0040-1707163.
  • Edwards, A. C.; Mocilac, P.; Geist, A.; Harwood, L. M.; Sharrad, C. A.; Burton, N. A.; Whitehead, R. C.; Denecke, M. A. Hydrophilic 2,9-bis-triazolyl-1,10-phenanthroline Ligands Enable Selective Am(iii) Separation: A Step Further Towards Sustainable Nuclear Energy. Chem. Commun. 2017, 53, 5001–5004. DOI: 10.1039/C7CC01855J.
  • Weßling, P.; Trumm, M.; Macerata, E.; Ossola, A.; Mossini, E., M.C; Arduini, G. A.; Casnati, A.; Mariani, M.; Adam, C.; Geist, A., et al. Activation of the Aromatic Core of 3,3′-(Pyridine-2,6-diylbis(1H-1,2,3-triazole-4,1-diyl))bis(propan-1-ol)—Effects on Extraction Performance, Stability Constants, and Basicity. Inorg. Chem. 2019, 58, 14642–14651. DOI: 10.1021/acs.inorgchem.9b02325.
  • Macerata, E.; Mossini, E.; Scaravaggi, S.; Mariani, M.; Mele, A.; Panzeri, W.; Boubals, N.; Berthon, L.; Charbonnel, M.-C.; Sansone, F., et al. Hydrophilic Clicked 2,6-Bis-triazolyl-pyridines Endowed with High Actinide Selectivity and Radiochemical Stability: Toward a Closed Nuclear Fuel Cycle. J. Am. Chem. Soc. 2016, 138, 7232–7235. DOI: 10.1021/jacs.6b03106.
  • Mossini, E.; Macerata, E.; Brambilla, L.; Panzeri, W.; Mele, A.; Castiglioni, C.; Mariani, M. Radiolytic Degradation of Hydrophilic PyTri Ligands for Minor Actinide Recycling. J. Radioanal. Nucl. Chem. 2019, 322, 1663–1673. DOI: 10.1007/s10967-019-06772-7.
  • Weßling, P.; Maag, M.; Baruth, G.; Sittel, T.; Sauerwein, F. S.; Wilden, A.; Modolo, G.; Geist, A.; Panak, P. J. Complexation and Extraction Studies of Trivalent Actinides and Lanthanides with Water-Soluble and CHON-Compatible Ligands for the Selective Extraction of Americium, Inorg. Chem. 2022, 61, 17719–17729. DOI: 10.1021/acs.inorgchem.2c02871.
  • Mossini, E.; Ossola, A. PyTri-Diol Behavior at Conditions Relevant for i-SANEX and EURO-GANEX Processes. In Nuclear Fuel Cycle: A Chemistry Conference (NFC3), CEA, France. CEA: France, 2021.
  • Özdemir, C.; Saçmacı, Ş.; Kartal, Ş.; Saçmacı, M. Determination of Gold and Palladium in Environmental Samples by FAAS after Dispersive liquid–liquid Microextraction Pretreatment. J. Ind. Eng. Chem. 2014, 20, 4059–4065. DOI: 10.1016/j.jiec.2014.01.005.
  • Bożejewicz, D.; Ośmiałowski, B.; Kaczorowska, M. A.; Witt, K. 2,6-Bis((benzoyl-R)amino)pyridine (R = H, 4-Me, and 4-NMe2) Derivatives for the Removal of Cu(II), Ni(II), Co(II), and Zn(II) Ions from Aqueous Solutions in Classic Solvent Extraction and a Membrane Extraction. Membranes. 2021, 11. DOI: 10.3390/membranes11040233.
  • Pyrzynska, K. Application of Solid Sorbents for Enrichment and Separation of Platinum Metal Ions. In Platinum Metals in the Environment, Zereini, F., Wiseman, C. L. S., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2015; pp 67–78. DOI: 10.1007/978-3-662-44559-4_5.
  • Borrini, J.; Favre-Reguillon, A.; Lemaire, M.; Gracia, S.; Arrachart, G.; Bernier, G.; Hérès, X.; Hill, C.; Pellet-Rostaing, S. Water Soluble PDCA Derivatives for Selective Ln(III)/An(III) and Am(III)/Cm(III) Separation. Solvent Extr. Ion Exch. 2015, 33, 224–235. DOI: 10.1080/07366299.2014.974449.
  • Gracia, S.; Arrachart, G.; Marie, C.; Chapron, S.; Miguirditchian, M.; Pellet-Rostaing, S. Separation of Am (III) by Solvent Extraction Using water-soluble H4tpaen Derivatives. Tetrahedron. 2015, 71, 5321–5336. DOI: 10.1016/j.tet.2015.06.015.
  • Taylor, R. J.; May, I.; Wallwork, A. L.; Denniss, I. S.; Hill, N. J. Fedorov, the Applications of Formo- and aceto-hydroxamic Acids in Nuclear Fuel Reprocessing. J. Alloys Compd. 1998, 271–273, 534–537. DOI: 10.1016/S0925-8388(98)00146-7.
  • Mahanty, B.; Kanekar, A. S.; Ansari, S. A.; Bhattacharyya, A.; Mohapatra, P. K. Separation of Neptunium from Actinides by Monoamides: A Solvent Extraction Study. Radiochim. Acta. 2019, 107, 369–376. DOI: 10.1515/ract-2018-3074.
  • Taylor, R. J.; Sinkov, S. I.; Choppin, G. R.; May, I. Solvent Extraction Behavior of Neptunium (IV) Ions between Nitric Acid and Diluted 30% Tri‐butyl Phosphate in the Presence of Simple Hydroxamic Acids. Null. 2008, 26(41–61). DOI: 10.1080/07366290701784159.
  • Malmbeck, R.; Magnusson, D.; Bourg, S.; Carrott, M.; Geist, A.; Hérès, X.; Miguirditchian, M.; Modolo, G.; Müllich, U.; Sorel, C., et al. Homogenous Recycling of Transuranium Elements from Irradiated Fast Reactor Fuel by the EURO-GANEX Solvent Extraction Process. Radiochim. Acta. 2019, 107, 917–929. DOI: 10.1515/ract-2018-3089.
  • Nash, K. L.; Nilsson, M. 1 - Introduction to the Reprocessing and Recycling of Spent Nuclear Fuels. In Reprocessing and Recycling of Spent Nuclear Fuel, Taylor, R., Ed.; Woodhead Publishing: Oxford, 2015; pp 3–25. DOI: 10.1016/B978-1-78242-212-9.00001-0.
  • Deblonde, G. J.-P.; Sturzbecher-Hoehne, M.; Abergel, R. J. Solution Thermodynamic Stability of Complexes Formed with the Octadentate Hydroxypyridinonate Ligand 3,4,3-LI(1,2-HOPO): A Critical Feature for Efficient Chelation of Lanthanide(IV) and Actinide(IV) Ions. Inorg. Chem. 2013, 52, 8805–8811. DOI: 10.1021/ic4010246.
  • Kelley, M. P.; Deblonde, G. J.-P.; Su, J.; Booth, C. H.; Abergel, R. J.; Batista, E. R.; Yang, P. Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO). Inorg. Chem. 2018, 57, 5352–5363. DOI: 10.1021/acs.inorgchem.8b00345.
  • Wang, Y.; Zhang, Z.; Abergel, R. J. Hydroxypyridinone-based Stabilization of Np(IV) Enabling Efficient U/Np/Pu Separations in the Adapted PUREX Process. Sep. Purif. Technol. 2021, 259, 118178. DOI: 10.1016/j.seppur.2020.118178.
  • Captain, I.; Deblonde, G. J.-P.; Rupert, P. B.; An, D. D.; Illy, M.-C.; Rostan, E.; Ralston, C. Y.; Strong, R. K.; Abergel, R. J. Engineered Recognition of Tetravalent Zirconium and Thorium by Chelator–Protein Systems: Toward Flexible Radiotherapy and Imaging Platforms. Inorg. Chem. 2016, 55, 11930–11936. DOI: 10.1021/acs.inorgchem.6b02041.
  • Kullgren, D. B.; Xu, J. Multidentate Hydroxypyridinonate Ligands for Pu(IV) Chelation in Vivo: Comparative Efficacy and Toxicity in Mouse of Ligands Containing 1,2-HOPO or Me-3,2-HOPO. Int. J. Radiat. Biol. 2000, 76, 199–214. DOI: 10.1080/095530000138853.
  • Deblonde, G. J.-P.; Ricano, A.; Abergel, R. J. Ultra-selective ligand-driven Separation of Strategic Actinides. Nat. Commun. 2019, 10. DOI: 10.1038/s41467-019-10240-x.
  • Deblonde, G. J.-P.; Sturzbecher-Hoehne, M.; Rupert, P. B.; An, D. D.; Illy, M.-C.; Ralston, C. Y.; Brabec, J.; de Jong, W. A.; Strong, R. K.; Abergel, R. J. Chelation and Stabilization of Berkelium in Oxidation State +IV. Nat. Chem. 2017, 9, 843–849. DOI: 10.1038/nchem.2759.
  • Deblonde, G. J.-P.; Lohrey, T. D.; An, D. D.; Abergel, R. J. Toxic Heavy Metal – Pb, Cd, Sn – Complexation by the Octadentate Hydroxypyridinonate Ligand Archetype 3,4,3-LI(1,2-HOPO). New J. Chem. 2018, 42, 7649–7658. DOI: 10.1039/C7NJ04559J.
  • Sturzbecher-Hoehne, M.; Choi, T. A.; Abergel, R. J. Hydroxypyridinonate Complex Stability of Group (IV) Metals and Tetravalent f-Block Elements: The Key to the Next Generation of Chelating Agents for Radiopharmaceuticals. Inorg. Chem. 2015, 54, 3462–3468. DOI: 10.1021/acs.inorgchem.5b00033.
  • Sturzbecher-Hoehne, M.; Yang, P.; D’Aléo, A.; Abergel, R. J. Intramolecular Sensitization of Americium Luminescence in Solution: Shining Light on short-lived Forbidden 5f Transitions. Dalton Trans. 2016, 45, 9912–9919. DOI: 10.1039/C6DT00328A.
  • Carter, K. P.; Smith, K. F.; Tratnjek, T.; Shield, K. M.; Moreau, L. M.; Rees, J. A.; Booth, C. H.; Abergel, R. J. Spontaneous Chelation-Driven Reduction of the Neptunyl Cation in Aqueous Solution. Chem. Eur. J. 2020, 26, 2354–2359. DOI: 10.1002/chem.201905695.
  • Carter, K. P.; Jian, J.; Pyrch, M. M.; Forbes, T. Z.; Eaton, T. M.; Abergel, R. J.; de Jong, W. A.; Gibson, J. K. Reductive Activation of Neptunyl and Plutonyl Oxo Species with a Hydroxypyridinone Chelating Ligand. Chem. Commun. 2018, 54, 10698–10701. DOI: 10.1039/C8CC05626A.
  • Deblonde, G. J.-P.; Lohrey, T. D.; Abergel, R. J. Inducing Selectivity and Chirality in Group IV Metal Coordination with high-denticity Hydroxypyridinones. Dalton Trans. 2019, 48, 8238–8247. DOI: 10.1039/C9DT01031A.
  • Sadhu, B.; Dolg, M. Enhancing Actinide(III) over Lanthanide(III) Selectivity through Hard-by-Soft Donor Substitution: Exploitation and Implication of Near-Degeneracy-Driven Covalency, Inorg. Chem. 2019, 58, 9738–9748. DOI: 10.1021/acs.inorgchem.9b00705.
  • Jocher, C. J.; Moore, E. G.; Xu, J.; Avedano, S.; Botta, M.; Aime, S.; Raymond, K. N. 1,2-Hydroxypyridonates as Contrast Agents for Magnetic Resonance Imaging: TREN-1,2-HOPO. Inorg. Chem. 2007, 46, 9182–9191. DOI: 10.1021/ic700985j.
  • Nelson, J. J. M.; Cheisson, T.; Rugh, H. J.; Gau, M. R.; Carroll, P. J.; Schelter, E. J. High-throughput Screening for Discovery of Benchtop Separations Systems for Selected Rare Earth Elements. Commun. Chem. 2020, 3. DOI: 10.1038/s42004-019-0253-x.
  • McCallum, T.; Soderstrom, M.; Quilodrán, A.; Jakovljevic, B. Solvent Extraction of Rare Earth Elements Using Cyanex”® 572 2014: p. 329 Perth, Australia. http://inis.iaea.org/search/search.aspx?orig_q=RN:48094958 07 Jul 2020.
  • Mincher, B. J.; Schmitt, N. C.; Tillotson, R. D.; Elias, G.; White, B. M.; Law, J. D. Characterizing Diamylamylphosphonate (DAAP) as an Americium Ligand for Nuclear Fuel-Cycle Applications. Solvent Extr. Ion Exch. 2014, 32, 153–166. DOI: 10.1080/07366299.2013.850288.
  • Yu, A.; Rao, G. L.; Nash, K. L.; Bond, A. H. Leaching of U(VI), Am(III), and Sr(II) from Simulated Tank Waste Sludges. Sep. Sci. Technol. 2003, 38, 359–374. DOI: 10.1081/SS-120016579.
  • Nash, K. L.; Gelis, A. V.; Jensen, M. P.; Bond, A. H.; Sullivan, J. C.; Rao, L.; Garnov, A. Actinides in Alkaline Media: Dissolution, Mineral Associations, and Speciation in Hanford Waste Tank Sludge Simulants. J. Nucl. Sci. Technol. 2002, 39, 512–515. DOI: 10.1080/00223131.2002.10875519.
  • Vaňura, P.; Jedináková-Křížová, V.; Hakenová, L.; Munesawa, Y. The Complexes of Holmium with Methylenediphosphonate and 1-Hydroxyethylidenephosphonate. J. Radioanal. Nucl. Chem. 2000, 246, 689–692. DOI: 10.1023/a:1006708332429.
  • Nash, K. L.; Rogers, R. D.; Ferraro, J.; Zhang, J. Lanthanide Complexes with 1-hydroxyethane-1,1-diphosphonic Acid: Solvent Organization and Coordination Geometry in Crystalline and Amorphous Solids. Inorg. Chim. Acta. 1998, 269, 211–223. DOI: 10.1016/S0020-1693(97)05765-4.
  • Nash, K. L. F-Element Complexation by Diphosphonate Ligands. J. Alloys Compd. 1997, 249, 33–40. DOI: 10.1016/S0925-8388(96)02520-0.
  • Kołodyńska, D.; Hubicki, Z.; Skiba, A. Heavy Metal Ions Removal in the Presence of 1-Hydroxyethane-1,1-diphosphonic Acid from Aqueous Solutions on Polystyrene Anion Exchangers. Ind. Eng. Chem. Res. 2009, 48, 10584–10593. DOI: 10.1021/ie901195j.
  • Das, D.; Hashmi, S.; Sengupta, A.; Kannan, S.; Kaushik, C. P. Understanding the Extraction Behaviour of UO22+ and Th4+ Using Novel picolinamide/N-oxo Picolinamide in Ionic Liquid: A Comparative Evaluation with Molecular Diluent. J. Mol. Liq. 2021, 332, 115773. DOI: 10.1016/j.molliq.2021.115773.
  • Bessen, N. P.; Braley, D. J. C. Assessing the Binding of Lanthanides and Actinides with Sulfur Donating Ligands, Doctoral Dissertation, Colorado School of Mines. Arthur Lakes Library. (n.d.) Golden, United States.
  • Jansone-Popova, S.; Ivanov, A. S.; Bryantsev, V. S.; Sloop, F. V.; Custelcean, R.; Popovs, I.; Dekarske, M. M.; Moyer, B. A. Bis-lactam-1,10-phenanthroline (Blphen), a New Type of Preorganized Mixed N,O-Donor Ligand that Separates Am(III) over Eu(III) with Exceptionally High Efficiency. Inorg. Chem. 2017, 56, 5911–5917. DOI: 10.1021/acs.inorgchem.7b00555.
  • Jansone-Popova, S. Novel Preorganized Ligands for Selective Actinide and Lanthanide Separation. In Actinide Separations Conference; Richland, United States. 2021.
  • Natarajan, R. 9 - Reprocessing of Spent Fast Reactor Nuclear Fuels. In Reprocessing and Recycling of Spent Nuclear Fuel, Taylor, R., Ed.; Woodhead Publishing: Oxford, 2015; pp 213–243. DOI: 10.1016/B978-1-78242-212-9.00009-5.
  • Magnusson, D.; Christiansen, B.; Malmbeck, R.; Glatz, J.-P. Investigation of the Radiolytic Stability of a CyMe4-BTBP Based SANEX Solvent. Radiochim. Acta. 2009, 97, 497–502. DOI: 10.1524/ract.2009.1647.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.