181
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Life cycle assessment of high nickel ternary lithium (NCM811) power batteries

, , &
Pages 1897-1909 | Received 02 Feb 2023, Accepted 21 Oct 2023, Published online: 06 Nov 2023

References

  • Ahmed, S., P. A. Nelson, and D. W. Dees. 2016. Study of a dry room in a battery manufacturing plant using a process model. Journal of Power Sources 326 (September):490–97. doi:10.1016/j.jpowsour.2016.06.107.
  • Argonne National Laboratory. 2022. Summary of Expansions and Updates in GREET® 2022. https://greet.es.anl.gov/files/greet-2022-summary.
  • Argonne National Laboratory. 2023. GREET excel model platform: GREET 2. https://greet.es.anl.gov/greet_excel_model.models.
  • Chagnes, A., and B. Pospiech. 2013. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. Journal of Chemical Technology & Biotechnology 88 (7):1191–99. doi:10.1002/jctb.4053.
  • Chen, X., C. Guo, M. Hongrui, L. Jiazhu, T. Zhou, L. Cao, and D. Kang. 2018. Organic reductants based leaching: A Sustainable process for the recovery of valuable metals from spent lithium ion batteries. Waste Management 75 (May):459–68. doi:10.1016/j.wasman.2018.01.021.
  • Chen, X., and J. Yang. 2022. Potential Benefit of electric vehicles in counteracting future urban warming: A case study of Hong Kong. Sustainable Cities and Society 87 (December):104200. doi:10.1016/j.scs.2022.104200.
  • China Meteorological Administration. 2023. China Greenhouse Gas Bulletin (In Chinese). Beijing: CHINA. https://www.cma.gov.cn/zfxxgk/gknr/qxbg/202301/t20230119_5274988.html
  • Dai, Q., J. C. Kelly, L. Gaines, and M. Wang. 2019. Life cycle analysis of lithium-ion batteries for automotive applications. Batteries 5 (2):48. doi:10.3390/batteries5020048.
  • da Silva Lima, L., M. Quartier, A. Buchmayr, D. Sanjuan-Delmás, H. Laget, D. Corbisier, J. Mertens, and J. Dewulf. 2021. Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based Renewable energy storage systems. Sustainable Energy Technologies and Assessments 46 (August):101286. doi:10.1016/j.seta.2021.101286.
  • Deng, Y., L. Jianyang, L. Tonghui, J. Zhang, F. Yang, and C. Yuan. 2017. Life cycle assessment of high capacity molybdenum disulfide lithium-ion battery for electric vehicles. Energy 123 (March):77–88. doi:10.1016/j.energy.2017.01.096.
  • Ding, Y., M. Daobin, W. Borong, R. Wang, Z. Zhao, and W. Feng. 2017. Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Applied Energy 195 (June):586–99. doi:10.1016/j.apenergy.2017.03.074.
  • Dunn, J. B., L. Gaines, J. Sullivan, and M. Q. Wang. 2012. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environmental Science & Technology 46 (22):12704–10. doi:10.1021/es302420z.
  • Ellingsen, L. A., C. R. Hung, G. Majeau-Bettez, B. Singh, Z. Chen, M. S. Whittingham, and A. H. Strømman. 2016. Nanotechnology for environmentally Sustainable electromobility. Nature Nanotechnology 11 (12):1039–51. doi:10.1038/nnano.2016.237.
  • Ellingsen, L. A.-W., G. Majeau-Bettez, B. Singh, A. Kumar Srivastava, L. Ole Valøen, and A. Hammer Strømman. 2014. Life cycle assessment of a lithium-ion battery vehicle pack: LCA of a li-ion battery vehicle pack. Journal of Industrial Ecology 18 (1):113–24. doi:10.1111/jiec.12072.
  • Ellingsen, L. A.-W., C. Roxanne Hung, and A. Hammer Strømman. 2017. Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction batteries with focus on greenhouse gas emissions. Transportation Research, Part D: Transport & Environment 55 (August):82–90. doi:10.1016/j.trd.2017.06.028.
  • Ember. Electricity Data Explorer. Accessed November 13, 2022. https://ember-climate.org/data/data-explorer/.
  • Faria, R., P. Marques, P. Moura, F. Freire, J. Delgado, and A. A. T. De. 2013. Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles. Renewable and Sustainable Energy Reviews 24 (August):271–87. doi:10.1016/j.rser.2013.03.063.
  • ISO (International Organization for Standardization). ISO 14040: 2006 environmental management — life cycle assessment — principles and framework. Accessed October 10, 2022. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/74/37456.html.
  • Larminie, J., and J. Lowry. 2012. Electric vehicle Technology explained. 2nd ed. Chichester, West Sussex, United Kingdom: Wiley, a John Wiley & Sons, Ltd., Publication.
  • Liu, J., Z. Zou, S. Zhang, and H. Zhang. 2021. Structure, modification, and commercialization of high nickel ternary material (LiNi0.8co0.1mn0.1o2 and LiNi0.8Co0.15Al0.05O2) for lithium ion batteries. Journal of Solid State Electrochemistry 25 (2):387–410. doi:10.1007/s10008-020-04818-5.
  • Lv, W., Z. Wang, H. Cao, Y. Sun, Y. Zhang, and Z. Sun. 2018. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering 6 (2):1504–21. doi:10.1021/acssuschemeng.7b03811.
  • Majeau-Bettez, G., T. R. Hawkins, and A. H. Strømman. 2011. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environmental Science & Technology 45 (10):4548–54. doi:10.1021/es103607c.
  • Manthiram, A., B. Song, and L. Wangda. 2017. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials 6 (January):125–39. doi:10.1016/j.ensm.2016.10.007.
  • MPS (Ministry of Public Security of China). 2022. The Country’s New Energy Vehicle Ownership Has Exceeded 10 Million Vehicles. Beijing: Ministry of Public Security of China. https://app.mps.gov.cn/gdnps/pc/content.jsp?id=8577652.
  • NBS (National Bureau of Statistics of China). 2021. China Statistical Yearbook. Beijing: China Statistical Publishing House. http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm.
  • NOAA (National Oceanic and Atmospheric Administration). 2023. “Climate Change: Atmospheric Carbon Dioxide.” Accessed September 11, 2023. http://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.
  • Notter, D. A., M. Gauch, R. Widmer, P. Wäger, A. Stamp, R. Zah, and H.-J. Althaus. 2010. Contribution of li-ion batteries to the environmental impact of electric vehicles. Environmental Science & Technology 44 (17):6550–56. doi:10.1021/es903729a.
  • Peters, J. F., M. Baumann, B. Zimmermann, J. Braun, and M. Weil. 2017. The environmental impact of li-ion batteries and the role of key parameters – a review. Renewable and Sustainable Energy Reviews 67 (January):491–506. doi:10.1016/j.rser.2016.08.039.
  • Sattar, R., S. Ilyas, H. Nawaz Bhatti, and A. Ghaffar. 2019. Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries. Separation and Purification Technology 209 (January):725–33. doi:10.1016/j.seppur.2018.09.019.
  • Sidiq, A. L., O. Floweri, J. Karunawan, O. Bityasmawan Abdillah, S. Puji Santosa, and F. Iskandar. 2022. NCM cathode active materials reproduced from end-of-life li-ion batteries using a simple and green hydrometallurgical recycling process. Materials Research Bulletin 153 (September):111901. doi:10.1016/j.materresbull.2022.111901.
  • Siqi, Z., L. Guangming, H. Wenzhi, H. Juwen, and Z. Haochen. 2019. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review. Waste Management & Research 37 (11):1142–52. doi:10.1177/0734242X19857130.
  • Sun, X., X. Luo, Z. Zhang, F. Meng, and J. Yang. 2020. Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles. Journal of Cleaner Production 273 (November):123006. doi:10.1016/j.jclepro.2020.123006.
  • Tagliaferri, C., S. Evangelisti, F. Acconcia, T. Domenech, P. Ekins, D. Barletta, and P. Lettieri. 2016. Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach. Chemical Engineering Research and Design 112 (August):298–309. doi:10.1016/j.cherd.2016.07.003.
  • Tao, Y., Z. Wang, W. Bangle, Y. Tang, and S. Evans. 2023. Environmental life cycle assessment of recycling Technologies for ternary lithium-ion batteries. Journal of Cleaner Production 389 (February):136008. doi:10.1016/j.jclepro.2023.136008.
  • US EPA (U.S. Environmental Protection Agency). 2016. “Greenhouse gas emissions from a typical passenger vehicle.” Accessed September 10, 2023. https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle.
  • Wang, Z. 2018. Potential and Life Cycle Assessment of Recycling of Power Batteries for New Energy Vehicles in Chinese. 新能源汽车动力电池回收利用潜力及生命周期评价 Master’s thesis, Tsinghua University. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202001&filename=1019603238.nh&v=.
  • WMO (World Meteorological Organization). 2022. The State of Greenhouse Gases in the Atmosphere Based on Global Observations Through 2021. Geneva, Switzerland: World Meteorological Organization. https://library.wmo.int/records/item/58743-no-18-26-october-2022?offset=1.
  • Xie, Y., Y. Haijun, O. Yannan, and L. Changdong. 2015. Environmental impact assessment of recycling waste traction battery. [废旧动力电池回收的环境影响评价研究] Inorganic Chemicals Industry 47 (4):43–61. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2015&filename=WJYG201504016&v=.
  • Yao, M. 2022. “Domestic power battery manufacturers to deliver hardcore report card.” [国产动力电池厂商交硬核 “成绩单”] China Energy News. August 1, 2022. http://www.cnenergynews.cn/chuneng/2022/08/04/detail_20220804125920.html.
  • Yuhao, S. 2022. Comparative analysis of lithium iron phosphate battery and ternary lithium battery. Journal of Physics 2152 (1):012056. doi:10.1088/1742-6596/2152/1/012056.
  • Yu, L., T. Liu, R. Amine, J. Wen, J. Lu, and K. Amine. 2022. High nickel and no cobalt─The pursuit of next-generation layered oxide cathodes. ACS Applied Materials & Interfaces 14 (20):23056–65. doi:10.1021/acsami.1c22091.
  • Yu, A., Y. Wei, W. Chen, N. Peng, and L. Peng. 2018. Life cycle environmental impacts and carbon emissions: A case study of electric and gasoline vehicles in China. Transportation Research, Part D: Transport & Environment 65 (December):409–20. doi:10.1016/j.trd.2018.09.009.
  • Yu, W., Y. Zheng, and Y. Zhang. 2022. Carbon emission reduction by echelon utilization of retired vehicle power batteries in energy storage power stations. World Electric Vehicle Journal 13 (8):144. doi:10.3390/wevj13080144.
  • Zackrisson, M. 2021. Life Cycle Assessment of Electric Vehicle Batteries and New Technologies. PhD diss., KTH Royal Institute of Technology. https://www.researchgate.net/publication/351839015_Life_cycle_assessment_of_electric_vehicle_batteries_and_new_technologies_MATS_ZACKRISSON_kth_royal_institute_of_technology.
  • Zackrisson, M., L. Avellán, and J. Orlenius. 2010. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles – critical issues. Journal of Cleaner Production 18 (15):1519–29. doi:10.1016/j.jclepro.2010.06.004.
  • Zhang, J., and G. Azimi. 2022. Recycling of lithium, cobalt, nickel, and manganese from end-of-Life lithium-ion battery of an electric vehicle using supercritical carbon dioxide. Resources, Conservation and Recycling 187 (December):106628. doi:10.1016/j.resconrec.2022.106628.
  • Zhang, X., L. Li, E. Fan, Q. Xue, Y. Bian, W. Feng, and R. Chen. 2018. Toward Sustainable and systematic recycling of spent rechargeable batteries. Chemical Society Reviews 47 (19):7239–302. doi:10.1039/C8CS00297E.
  • Zhang, L., L. Wang, and J. Chai. 2020. Influence of new energy vehicle subsidy policy on emission reduction of atmospheric pollutants: A case study of Beijing, China. Journal of Cleaner Production 275 (December):124069. doi:10.1016/j.jclepro.2020.124069.
  • Zheng, R., W. Wang, Y. Dai, M. Quanxin, Y. Liu, M. Deying, L. Ruhong, J. Ren, and C. Dai. 2017. A closed-loop process for recycling LiNi x Co y Mn (1−x−y) O 2 from mixed cathode materials of lithium-ion batteries. Green Energy & Environment 2 (1):42–50. doi:10.1016/j.gee.2016.11.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.