5,886
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Vitamin D3 and carbamazepine protect against Clostridioides difficile infection in mice by restoring macrophage lysosome acidification

, , , , , , , , , , , , , , ORCID Icon, , , , , ORCID Icon & show all
Pages 2050-2067 | Received 09 Jul 2021, Accepted 06 Dec 2021, Published online: 06 Jan 2022

References

  • Marra AR, Perencevich EN, Nelson RE, et al. Incidence and outcomes associated with clostridium difficile infections. JAMA Network Open. 2020;3:e1917597.
  • Wiegand PN, Nathwani D, Wilcox MH, et al. Clinical and economic burden of Clostridium difficile infection in Europe: a systematic review of healthcare-facility-acquired infection. J Hosp Infect. 2012;81:1–14.
  • Ho J, Dai RZ, Kwong TN, et al. Disease Burden of Clostridium difficile infections in Adults, Hong Kong, China, 2006-2014. Emerg Infect Dis. 2017;23:1671–1679.
  • McKee HK, Kajiwara C, Yamaguchi T, et al. Clostridioides difficile toxins enhanced the in vitro production of CXC chemokine ligand 2 and tumor necrosis factor-alpha via Toll-like receptors in macrophages. J Med Microbiol. 2021;70. DOI:10.1099/jmm.0.001342.
  • Goy SD, Olling A, Neumann D, et al. Human neutrophils are activated by a peptide fragment of Clostridium difficile toxin B presumably via formyl peptide receptor. Cell Microbiol. 2015;17:893–909.
  • Markham NO, Bloch SC, Shupe JA, et al. Murine intrarectal instillation of purified recombinant clostridioides difficile toxins enables mechanistic studies of pathogenesis. Infect Immun. 2021;89. DOI:10.1128/IAI.00543-20.
  • Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016;14:609–620.
  • Souza MH, Melo‐filho AA, Rocha MFG, et al. The involvement of macrophage-derived tumour necrosis factor and lipoxygenase products on the neutrophil recruitment induced by Clostridium difficile toxin B. Immunology. 1997;91:281–288.
  • Rocha MF, Maia ME, Bezerra LR, et al. Clostridium difficile toxin A induces the release of neutrophil chemotactic factors from rat peritoneal macrophages: role of interleukin-1beta, tumor necrosis factor alpha, and leukotrienes. Infect Immun. 1997;65(7):2740–2746.
  • Ng J, Hirota SA, Gross O, et al. Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology. 2010;139:542–552, 552 e541-543.
  • Xu H, Yang J, Gao W, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014;513:237–241.
  • Jefferson KK, Smith MF Jr., Bobak DA. Roles of intracellular calcium and NF-kappa B in the Clostridium difficile toxin A-induced up-regulation and secretion of IL-8 from human monocytes. J Immunol. 1999;163:5183–5191.
  • Chen P, Tao L, Liu Z, et al. Structural insight into Wnt signaling inhibition by Clostridium difficile toxin B. FEBS J. 2019;286:874–881.
  • El Feghaly RE, Stauber JL, Deych E, et al. Markers of intestinal inflammation, not bacterial burden, correlate with clinical outcomes in Clostridium difficile infection. Clin Infect Dis. 2013;56:1713–1721.
  • Solomon K, Martin AJ, O’Donoghue C, et al. Mortality in patients with Clostridium difficile infection correlates with host pro-inflammatory and humoral immune responses. J Med Microbiol. 2013;62:1453–1460.
  • Wang H, Wang N, Xu D, et al. Oxidation of multiple MiT/TFE transcription factors links oxidative stress to transcriptional control of autophagy and lysosome biogenesis. Autophagy. 2020;16:1683–1696.
  • Zhang T, Zhou Q, Ogmundsdottir MH, et al. Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1. J Cell Sci. 2015;128:2938–2950.
  • Leclerc J, Garandeau D, Pandiani C, et al. Lysosomal acid ceramidase ASAH1 controls the transition between invasive and proliferative phenotype in melanoma cells. Oncogene. 2019;38:1282–1295.
  • Vohra P, Poxton IR. Induction of cytokines in a macrophage cell line by proteins of Clostridium difficile. FEMS Immunol Med Microbiol. 2012;65:96–104.
  • Castagliuolo I, Keates AC, Wang CC, et al. Clostridium difficile toxin A stimulates macrophage-inflammatory protein-2 production in rat intestinal epithelial cells. J Immunol. 1998;160:6039–6045.
  • Dorrington MG, Fraser IDC. NF-kappaB signaling in macrophages: dynamics, crosstalk, and signal integration. Front Immunol. 2019;10:705.
  • Duran A, Linares JF, Galvez AS, et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell. 2008;13:343–354.
  • Wu WKK, Yue J. Autophagy in host-microbe interactions. Semin Cell Dev Biol. 2020;101:1–2.
  • Klionsky DJ, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. 4th. Autophagy2021 1–382 .DOI: 10.1080/15548627.2020.1797280.
  • Hu W, Zhang L, Li MX, et al. Vitamin D3 activates the autolysosomal degradation function against Helicobacter pylori through the PDIA3 receptor in gastric epithelial cells. Autophagy. 2019;15:707–725.
  • Mandic LM, Acimovic JM, Jovanovic VB. The possibility of determining N-acetyl-beta-D-glucosaminidase isoenzymes under alkaline conditions. Clin Biochem. 2005;38:384–389.
  • Sun P, Sleat DE, Lecocq M, et al. Acid phosphatase 5 is responsible for removing the mannose 6-phosphate recognition marker from lysosomal proteins. Proc Natl Acad Sci U S A. 2008;105:16590–16595.
  • Tao L, Zhang J, Meraner P, et al. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature. 2016;538:350–355.
  • Wong CO, Gregory S, Hu H, et al. Lysosomal degradation is required for sustained phagocytosis of bacteria by macrophages. Cell Host Microbe. 2017;21:719–730 e716.
  • Sarkar S, Ravikumar B, Floto RA, et al. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ. 2009;16:46–56.
  • Hutton ML, Mackin KE, Chakravorty A, et al. Small animal models for the study of Clostridium difficile disease pathogenesis. FEMS Microbiol Lett. 2014;352:140–149.
  • Gao W, Yang J, Liu W, et al. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc Natl Acad Sci U S A. 2016;113:E4857–4866.
  • Orrell KE, Melnyk RA. Large clostridial toxins: mechanisms and roles in disease. Microbiol Mol Biol Rev. 2021;85:e0006421.
  • Orr ME, Oddo S. Autophagic/lysosomal dysfunction in Alzheimer’s disease. Alzheimers Res Ther. 2013;5:53.
  • Senkevich K, Gan-Or Z. Autophagy lysosomal pathway dysfunction in Parkinson’s disease; evidence from human genetics. Parkinsonism Relat Disord. 2020;73:60–71.
  • Wang X, Zhang X, Chu ESH, et al. Defective lysosomal clearance of autophagosomes and its clinical implications in nonalcoholic steatohepatitis. FASEB J. 2018;32:37–51.
  • Hu W, Chan H, Lu L, et al. Autophagy in intracellular bacterial infection. Semin Cell Dev Biol. 2020;101:41–50.
  • Zhang L, Hu W, Cho CH, et al. Reduced lysosomal clearance of autophagosomes promotes survival and colonization of Helicobacter pylori. J Pathol. 2018;244:432–444.
  • Ho J, Yu J, Wong SH, et al. Autophagy in sepsis: degradation into exhaustion? Autophagy. 2016;12:1073–1082.
  • Riesenberg S, Groetchen A, Siddaway R, et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun. 2015;6:8755.
  • Qian L, Pan S, Shi L, et al. Downregulation of microRNA-218 is cardioprotective against cardiac fibrosis and cardiac function impairment in myocardial infarction by binding to MITF. Aging (Albany NY). 2019;11:5368–5388.
  • Chan H, Zhao S, Zhang L, et al. Clostridium difficile toxin B induces autophagic cell death in colonocytes. J Cell Mol Med. 2018;22:2469–2477.
  • Yayoi Y, Ohsawa Y, Koike M, et al. Specific localization of lysosomal aminopeptidases in type II alveolar epithelial cells of the rat lung. Arch Histol Cytol. 2001;64:89–97.
  • Malet JK, Cossart P, Ribet D. Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol-dependent cytolysins. Cell Microbiol. 2017;19:e12682.
  • Ohlinger K, Absenger-Novak M, Meindl C, et al. Different sensitivity of macrophages to phospholipidosis induction by amphiphilic cationic drugs. Int J Mol Sci. 2020;21:8391.
  • Lin CW, Lo S, Perng D-S, et al. Complete activation of autophagic process attenuates liver injury and improves survival in septic mice. Shock. 2014;41:241–249.
  • Ebrahimi-Fakhari D, Saffari A, Wahlster L, et al. Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep. 2016;17:1053–1070.
  • Yin K, Agrawal DK. Vitamin D and inflammatory diseases. J Inflamm Res. 2014;7:69–87.
  • Bianchi M, Rossoni G, Sacerdote P, et al. Carbamazepine exerts anti-inflammatory effects in the rat. Eur J Pharmacol. 1995;294:71–74.
  • Matoth I, Pinto F, Sicsic C, et al. Inhibitory effect of carbamazepine on inflammatory mediators produced by stimulated glial cells. Neurosci Res. 2000;38:209–212.
  • Gomez CD, Buijs RM, Sitges M. The anti-seizure drugs vinpocetine and carbamazepine, but not valproic acid, reduce inflammatory IL-1beta and TNF-alpha expression in rat hippocampus. J Neurochem. 2014;130:770–779.
  • Wong KK, Lee R, Watkins RR, et al. Prolonged clostridium difficile infection may be associated with vitamin D deficiency. JPEN J Parenter Enteral Nutr. 2016;40:682–687.
  • Ananthakrishnan AN, Cagan A, Gainer VS, et al. Higher plasma vitamin D is associated with reduced risk of Clostridium difficile infection in patients with inflammatory bowel diseases. Aliment Pharmacol Ther. 2014;39:1136–1142.
  • Micic D, Rao, K, Trindade, BC, et al. Serum 25-Hydroxyvitamin D levels are not associated with adverse outcomes in clostridium difficile infection. Infect Dis Rep. 2015;7:5979.
  • Mutai WC, Mureithi MW, Anzala O, et al. High prevalence of multidrug-resistant clostridioides difficile following extensive use of antimicrobials in hospitalized patients in Kenya. Front Cell Infect Microbiol. 2020;10:604986.
  • Lew T, Putsathit P, Sohn KM, et al. Antimicrobial susceptibilities of Clostridium difficile Isolates from 12 Asia-Pacific Countries in 2014 and 2015. Antimicrob Agents Chemother. 2020;64. DOI:10.1128/AAC.00296-20.
  • Harusato A, Geem D, Denning TL. Macrophage Isolation from the mouse small and large intestine. Methods Mol Biol. 2016;1422:171–180.
  • Winston JA, Thanissery R, Montgomery SA, et al. Cefoperazone-treated mouse model of clinically-relevant Clostridium difficile strain R20291. J Vis Exp. 2016. DOI:10.3791/54850
  • Ho J, Chan H, Liang Y, et al. Cathelicidin preserves intestinal barrier function in polymicrobial sepsis. Crit Care. 2020;24:47.
  • Murai IH, Fernandes AL, Sales LP, et al. Effect of a single high dose of Vitamin D3 on hospital length of stay in patients with moderate to severe COVID-19. JAMA. 2021;325:1053–1060.
  • Zuo T, Wong SH, Cheung CP, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018;9:3663.
  • Reeves AE, Theriot CM, Bergin IL, et al. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection. Gut Microbes. 2011;2:145–158.