5,052
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Converging roles of PSENEN/PEN2 and CLN3 in the autophagy-lysosome system

, , , , , , , , , , , , , & ORCID Icon show all
Pages 2068-2085 | Received 14 Jun 2021, Accepted 06 Dec 2021, Published online: 29 Dec 2021

References

  • Takasugi N, Tomita T, Hayashi I, et al. The role of presenilin cofactors in the gamma-secretase complex. Nature. 2003 Mar 27;422(6930):438–441.
  • Kaether C, Haass C, Steiner H. Assembly, trafficking and function of gamma-secretase. Neurodegener Dis. 2006;3(4–5):275–283.
  • Cai T, Tomita T. Structure-activity relationship of presenilin in γ-secretase-mediated intramembrane cleavage. Semin Cell Dev Biol. 2020 Mar;105:102–109.
  • De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron. 2003 Apr 10;38(1):9–12.
  • Lichtenthaler SF, Haass C, Steiner H. Regulated intramembrane proteolysis–lessons from amyloid precursor protein processing. J Neurochem. 2011 Jun;117(5):779–796.
  • Eggert S, Thomas C, Kins S, et al. Trafficking in alzheimer’s disease: modulation of app transport and processing by the transmembrane proteins LRP1, SorLA, SorCS1c, Sortilin, and calsyntenin. Mol Neurobiol. 2018 Jul;55(7):5809–5829.
  • Wolfe MS. Unraveling the complexity of γ-secretase. Semin Cell Dev Biol. 2020 Jan;105:3–11.
  • Wang B, Yang W, Wen W, et al. Gamma-secretase gene mutations in familial acne inversa. Science. 2010 Nov 19;330(6007):1065.
  • Hori K, Sen A, Artavanis-Tsakonas S. Notch signaling at a glance. J Cell Sci. 2013 May;126(Pt 10):2135–2140.
  • Güner G, Lichtenthaler SF. The substrate repertoire of γ-secretase/presenilin. Semin Cell Dev Biol. 2020 Jun;105:27–42.
  • Neely KM, Green KN, LaFerla FM. Presenilin is necessary for efficient proteolysis through the autophagy-lysosome system in a gamma-secretase-independent manner. J Neurosci. 2011 Feb 23;31(8):2781–2791.
  • Nixon RA, Yang DS. Autophagy failure in Alzheimer’s disease–locating the primary defect. Neurobiol Dis. 2011 Jul;43(1):38–45.
  • Wilson CA, Murphy DD, Giasson BI, et al. Degradative organelles containing mislocalized alpha-and beta-synuclein proliferate in presenilin-1 null neurons. J Cell Biol. 2004 May;165(3):335–346.
  • Esselens C, Oorschot V, Baert V, et al. Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J Cell Biol. 2004 Sep;166(7):1041–1054.
  • Coen K, Flannagan RS, Baron S, et al. Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J Cell Biol. 2012 Jul 9;198(1):23–35.
  • Lee JH, McBrayer MK, Wolfe DM, et al. Presenilin 1 maintains lysosomal Ca(2+) homeostasis via TRPML1 by Regulating vATPase-mediated lysosome acidification. Cell Rep. 2015 Sep 1;12(9):1430–1444.
  • Lee JH, Yu WH, Kumar A, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell. 2010 Jun 25;141(7):1146–1158.
  • Whyte LS, Lau AA, Hemsley KM, et al. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer’s disease? J Neurochem. 2017 Mar;140(5):703–717.
  • Zhang X, Garbett K, Veeraraghavalu K, et al. A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci. 2012 Jun 20;32(25):8633–8648.
  • Meckler X, Checler F. Presenilin 1 and presenilin 2 target gamma-secretase complexes to distinct cellular compartments. J Biol Chem. 2016 Jun 10;291(24):12821–12837.
  • Sannerud R, Esselens C, Ejsmont P, et al. Restricted location of PSEN2/gamma-secretase determines substrate specificity and generates an intracellular abeta pool. Cell. 2016 Jun 30;166(1):193–208.
  • Nugent T, Mole SE, Jones DT. The transmembrane topology of batten disease protein CLN3 determined by consensus computational prediction constrained by experimental data. FEBS Lett. 2008 Apr 2; 582(7):12821–12837.
  • Cotman SL, Starpoli JF. The juvenile batten disease protein, CLN3, and its role in regulating anterograde and retrograde post-Golgi trafficking. Clin Lipidol. 2012;7(1):79–91.
  • Lerner TJ, Boustany R-MN, Anderson JW, International-Batten-Disease-Consortium. Isolation of a novel gene underlying batten disease, CLN3. Cell. 1995;82(6):949–957.
  • Kollmann K, Uusi-Rauva K, Scifo E, et al. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta. 2013 Nov;1832(11):1866–1881.
  • Butz ES, Chandrachud U, Mole SE, et al. Moving towards a new era of genomics in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis. 2020 Sep;1866(9):165571.
  • Anderson GW, Goebel HH, Simonati A. Human pathology in NCL. Biochim Biophys Acta. 2013 Nov;1832(11):1807–1826.
  • Herva R, Tyynela J, Hirvasniemi A, et al. Northern epilepsy: a novel form of neuronal ceroid-lipofuscinosis. Brain Pathol. 2000 Apr;10(2):215–222.
  • Wisniewski KE, Kida E, Gordon-Majszak W, et al. Altered amyloid beta-protein precursor processing in brains of patients with neuronal ceroid lipofuscinosis. Neurosci Lett. 1990 Nov 27;120(1):94–96.
  • Wisniewski KE, Maslinska D, Kitaguchi T, et al. Topographic heterogeneity of amyloid B-protein epitopes in brains with various forms of neuronal ceroid lipofuscinoses suggesting defective processing of amyloid precursor protein. Acta Neuropathol. 1990;80(1):26–34.
  • Cheng R, Tang M, Martinez I, et al. Linkage analysis of multiplex caribbean hispanic families loaded for unexplained early-onset cases identifies novel Alzheimer’s disease loci. Alzheimers Dement (Amst). 2018;10:554–562.
  • Qureshi YH, Patel VM, Berman DE, et al. An Alzheimer’s disease-linked loss-of-function cln5 variant impairs cathepsin d maturation, consistent with a retromer trafficking defect. Mol Cell Biol. 2018 10;38(20). 10.1128/MCB.00011-18
  • Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat. 2012 Jan;33(1):42–63.
  • Oetjen S, Kuhl D, Hermey G. Revisiting the neuronal localization and trafficking of CLN3 in juvenile neuronal ceroid lipofuscinosis. J Neurochem. 2016 Nov;139(3):456–470.
  • Storch S, Pohl S, Braulke T. A dileucine motif and a cluster of acidic amino acids in the second cytoplasmic domain of the batten disease-related CLN3 protein are required for efficient lysosomal targeting. J Biol Chem. 2004 Dec 17;279(51):53625–53634.
  • Kyttala A, Ihrke G, Vesa J, et al. Two motifs target Batten disease protein CLN3 to lysosomes in transfected nonneuronal and neuronal cells. Mol Biol Cell. 2004 Mar;15(3):1313–1323.
  • Kyttala A, Yliannala K, Schu P, et al. AP-1 and AP-3 facilitate lysosomal targeting of Batten disease protein CLN3 via its dileucine motif. J Biol Chem. 2005 Mar 18;280(11):10277–10283.
  • Mao Q, Xia H, Davidson BL. Intracellular trafficking of CLN3, the protein underlying the childhood neurodegenerative disease, Batten disease. FEBS Lett. 2003 Dec 4;555(2):351–357.
  • Schroder B, Wrocklage C, Pan C, et al. Integral and associated lysosomal membrane proteins. Traffic. 2007 Dec;8(12):1676–1686.
  • Cao Y, Espinola JA, Fossale E, et al. Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem. 2006 Jul 21;281(29):20483–20493.
  • Schmidtke C, Tiede S, Thelen M, et al. Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. J Biol Chem. 2019 06; 294(24): 9592–9604.
  • Fossale E, Wolf P, Espinola JA, et al. Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis. BMC Neurosci. 2004 Dec 10;5:57.
  • Lojewski X, Staropoli JF, Biswas-Legrand S, et al. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum Mol Genet. 2014 Apr;23(8):2005–2022.
  • Yasa S, Modica G, Sauvageau E, et al. CLN3 regulates endosomal function by modulating Rab7A-effector interactions. J Cell Sci. 2020 Mar;133(6). 10.1242/jcs.234047.
  • Ramirez-Montealegre D, Pearce DA. Defective lysosomal arginine transport in juvenile Batten disease. Hum Mol Genet. 2005 Dec;14(23):3759–3773.
  • Metcalf DJ, Calvi AA, Seaman M, et al. Loss of the Batten disease gene CLN3 prevents exit from the TGN of the mannose 6-phosphate receptor. Traffic. 2008 Nov;9(11):1905–1914.
  • Brajenovic M, Joberty G, Kuster B, et al. Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. J Biol Chem. 2004 Mar 26;279(13):12804–12811.
  • Holmes O, Paturi S, Selkoe DJ, et al. Pen-2 is essential for gamma-secretase complex stability and trafficking but partially dispensable for endoproteolysis. Biochemistry. 2014 Jul 15;53(27):4393–4406.
  • Prokop S, Shirotani K, Edbauer D, et al. Requirement of PEN-2 for stabilization of the presenilin N-/C-terminal fragment heterodimer within the gamma-secretase complex. J Biol Chem. 2004 May 28 279(22):23255–23261.
  • Bammens L, Chávez-Gutiérrez L, Tolia A, et al. Functional and topological analysis of Pen-2, the fourth subunit of the gamma-secretase complex. J Biol Chem. 2011 Apr;286(14):779–796.
  • Kopan R, Schroeter EH, Weintraub H, et al. Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1683–1688.
  • Kucera A, Bakke O, Progida C. The multiple roles of Rab9 in the endolysosomal system. Commun Integr Biol. 2016 Jul-Aug;9(4):e1204498.
  • Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2021Jan; 171: 1–382 (4th edition)(1)
  • Bajaj L, Lotfi P, Pal R, et al. Lysosome biogenesis in health and disease. J Neurochem. 2018 Aug 9;148:573–589.
  • Sardiello M, Palmieri M, Di Ronza A, et al. A gene network regulating lysosomal biogenesis and function. Science. 2009 Jul 24;325(5939):473–477.
  • Chan CH, Mitchison HM, Pearce DA. Transcript and in silico analysis of CLN3 in juvenile neuronal ceroid lipofuscinosis and associated mouse models. Hum Mol Genet. 2008 Nov 1;17(21):3332–3339.
  • Kitzmuller C, Haines RL, Codlin S, et al. A function retained by the common mutant CLN3 protein is responsible for the late onset of juvenile neuronal ceroid lipofuscinosis. Hum Mol Genet. 2008 Jan 15;17(2):303–312.
  • Jarvela I, Lehtovirta, M, Tikkanen, R, et al. Defective intracellular transport of CLN3 is the molecular basis of Batten disease (JNCL). Hum Mol Genet. 1999 Jun;8(6):1091–1098.
  • Zhong Y, Mohan K, Liu J, et al. Loss of CLN3, the gene mutated in juvenile neuronal ceroid lipofuscinosis, leads to metabolic impairment and autophagy induction in retinal pigment epithelium. Biochim Biophys Acta Mol Basis Dis. 2020 Oct 1;1866(10):165883.
  • Katz ML, Shibuya H, Liu PC, et al. A mouse gene knockout model for juvenile ceroid-lipofuscinosis (Batten disease). J Neurosci Res. 1999 Aug 15;57(4):551–556.
  • Mitchison HM, Bernard DJ, Greene ND, et al. Targeted disruption of the Cln3 gene provides a mouse model for batten disease. the batten mouse model consortium [corrected]. Neurobiol Dis. 1999 Oct;6(5):321–334.
  • Cotman SL, Vrbanac, V, Lebel, LA, et al. Cln3(Deltaex7/8) knock-in mice with the common JNCL mutation exhibit progressive neurologic disease that begins before birth. Hum Mol Genet. 2002 Oct 15;11(22):2709–2721.
  • Cao Y, Staropoli JF, Biswas S, et al. Distinct early molecular responses to mutations causing vLINCL and JNCL presage ATP synthase subunit C accumulation in cerebellar cells. PLoS One. 2011 Feb 17;6(2):e17118.
  • Chandrachud U, Walker MW, Simas AM, et al. Unbiased cell-based screening in a neuronal cell model of batten disease highlights an interaction between Ca2+ homeostasis, autophagy, and CLN3 protein function. J Biol Chem. 2015 Jun 5;290(23):2709–2721.
  • Medina DL, Fraldi A, Bouche V, et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell. 2011 Sep 13;21(3):421–430.
  • Palmieri M, Pal R, Nelvagal HR, et al. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun. 2017 Feb 6;8:14338.
  • Xiao Q, Yan P, Ma X, et al. Neuronal-Targeted TFEB accelerates lysosomal degradation of app, reducing abeta generation and amyloid plaque pathogenesis. J Neurosci. 2015 Sep 2;35(35):12137–12151.
  • Zhang QC, Petrey D, Deng L, et al. Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature. 2012 Oct 25;490(7421):556–560.
  • Kotlyar M, Pastrello C, Malik Z, et al. IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species. Nucleic Acids Res. 2019 Jan 8;47(D1):D581–D589.
  • Reddy K, Cusack CL, Nnah IC, et al. Dysregulation of nutrient sensing and clearance in presenilin deficiency. Cell Rep. 2016 Mar 8;14(9):2166–2179.
  • Hermey G, Schmidt N, Bluhm B, et al. SorCS1 variants and amyloid precursor protein (APP) are co-transported in neurons but only SorCS1c modulates anterograde APP transport. J Neurochem. 2015 Oct;135(1):60–75.
  • N’Diaye EN, Kajihara KK, Hsieh I, et al. PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep. 2009 Feb;10(2):173–179.
  • Van Engelenburg SB, Palmer AE. Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors. Nat Methods. 2010 Apr;7(4):325–330.
  • Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996 Mar 1;68(5):850–858.
  • Nielsen MS, Keat SJ, Hamati JW, et al. Different motifs regulate trafficking of SorCS1 isoforms. Traffic. 2008 Jun;9(6):980–994.
  • Oetjen S, Mahlke C, Hermans-Borgmeyer I, et al. Spatiotemporal expression analysis of the growth factor receptor SorCS3. J Comp Neurol. 2014 Oct 15;522(15):3386–3402.
  • Denkena J, Zaisser A, Merz B, et al. Neuronal activity regulates alternative exon usage. Mol Brain. 2020 Nov 10;13(1):148.
  • Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013 Feb 15;339(6121):819–823.
  • Hermey G, Hoffmeister-Ullerich SA, Merz B, et al. Amyloidosis causes downregulation of SorLA, SorCS1 and SorCS3 expression in mice. Biol Chem. 2019 Aug 27;400(9):1181–1189.
  • Xie F, Xiao P, Chen D, et al. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012 Jan;80(1):75–84.
  • Pfaffl MW. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002 May;30(9):e36.