279
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Automatic identification of rock formation interface based on borehole imaging

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 493-504 | Received 09 Nov 2020, Accepted 08 Mar 2021, Published online: 26 Mar 2021

References

  • Assous, S., P. Elkington, S. Clark, and J. Whetton. 2013. Automated detection of planar geologic features in borehole images. Geophysics 79 (1):D11–D19. doi:10.1190/geo2013-0189.1.
  • Cao, M., Z. Deng, L. Rai, S. Teng, M. Zhao, and M. Collier. 2018. Generating panoramic unfolded image from borehole video acquired through APBT. Multimed. Tools Appl 77 (19):25149–79. doi:10.1007/s11042-018-5779-x.
  • Cruz, R., D. Cacau, R. Santos, E. Pereira, and E. Clua. 2017. Improving accuracy of automatic fracture detection in borehole images with deep learning and GPUs. 30th SIBGRAPI conference on graphics, patterns and images. IEEE Computer Society 345–50. doi:10.1109/SIBGRAPI.2017.52.
  • Deng, Z., M. Cao, L. Rai, and W. Gao. 2018. A two-stage classification method for borehole-wall images with support vector machine. PLoS One 13 (6):e0199749. doi:10.1371/journal.pone.0199749.
  • Feng, S., T. Huang, and H. Li. 2013. Automatic identification of cracks from borehole image under complicated geological conditions. Journal of Shanghai Jiaotong University (Science) 18 (6):699–705. doi:10.1007/s12204-013-1452-8.
  • Han, Z., C. Wang, Y. Jiao, C. Wang, and J. Wang. 2020. A proposed method for mathematical quantitative description of fractures from borehole wall images. IOP Conference Series: Earth and Environmental Science 570 (4):042001. doi:10.1088/1755-1315/570/4/042001.
  • Han, Z., C. Wang, and H. Zhu. 2015. Research on deep joints and lode extension based on digital borehole camera technology. Pol. Marit. Res 22 (s1):10–14. doi:10.1515/pomr-2015-0025.
  • Kanaori, Y. 1983. The observation of crack development around an underground rock chamber by borehole television system. Rock Mech. Rock Eng 16 (2):133–42. doi:10.1016/0148-9062(83)90315-7.
  • Leal, J., L. Ochoa, and C. Contreras. 2018. Automatic identification of calcareous lithologies using support vector machines, borehole logs and fractal dimension of borehole electrical imaging. Earth Sci. Res. J 22 (2):75–82. doi:10.15446/esrj.v22n2.68320.
  • Li, L., C. Yu, Z. Han, and T. Sun. 2019. Automatic identification of the rock-soil interface and solution fissures from optical borehole images based on color features. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens 12 (10):3862–73. doi:10.1109/JSTARS.2019.2940513.
  • Liu, C., X. Zheng, A. Arif, and M. Xu. 2020. Measurement and analysis of penetration rate and vibration on a roof bolter for identification rock interface of roadway roof, energy sources Part A-Recovery util. Environ. Eff 42 (22):2751–63. doi:10.1080/15567036.2019.1618987.
  • Lu, K., ., and S. Chang. 2016. Detecting change-points for shifts in mean and variance using fuzzy classification maximum likelihood change-point algorithms. J. Comput. Appl. Math 308:447–63. doi:10.1016/j.cam.2016.06.006.
  • Luciana, O., R. Clécio, L. Elisangela, B. Manuel, D. Maury, P. Márcio, P. Marcelo, and M. Juliana. 2020. Automatic detection of fractures and breakouts patterns in acoustic borehole image logs using fast-region convolutional neural networks. J. Petrol. Sci. Eng 191:107099. doi:10.1016/j.petrol.2020.107099.
  • Roland, D., B. Birt., and J. Masoud. 2019. Quick structural modelling using Multi-Hole borehole image analysis; A critical input in mine planning. ASEG Extended Abstracts 1:1–3. doi:10.1080/22020586.2019.12073016.
  • Skoczylas, N., and K. Godyń. 2014. Evaluating selected lithological features using photographs taken with an introscopic camera in boreholes. Int. J. Rock Mech. Min. Sci 72:319–24. doi:10.1016/j.ijrmms.2014.09.017.
  • Sun, X. 2013. Optimization study on roadway roof support parameters based on strata strength identification. Coal Sci. Technol 41(1):46–48. 52. CNKI:SUN:MTKJ.0.2013-10-020.
  • Tian, J., J. Li, W. Cheng, Z. Zhu, L. Yang, Y. Yang, and T. Zhang. 2018. Working mechanism and rock-breaking characteristics of coring drill bit. J. Petrol. Sci. Eng 162:348–57. doi:10.1016/j.petrol.2017.12.047.
  • Wang, C., X. Zou, Z. Han, Y. Wang, and J. Wang. 2016. An automatic recognition and parameter extraction method for structural planes in borehole image, J. Appl. Geophys 135:135–43. doi:10.1016/j.jappgeo.2016.10.005.
  • Wang, J., C. Wang, C. Zhu, and S. Hu. 2017. Borehole image-based evaluation of coral reef porosity distribution characteristics, Mar. Geores. Geotechnol 35 (7):1008–17. doi:10.1080/1064119X.2016.1276655.
  • Yang, H., N. Li, T. Li, and Q. Liu. 2018. Least-square-based nonuniform borehole SAR imaging for subsurface sensing. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens 1–12. doi:10.1109/JSTARS.2018.2813338.
  • Yang, S., 2019. Rock mass classification based approach for the intelligent sensing of roof quality at coal entry excavation. http://kreader.cnki.net/Kreader/CatalogViewPage.aspx?DbCode=cdmd&filename=1019603675.nh&tablename=CDFDLAST2020&compose=&first=1&uid=WEEvREcwSlJHSldRa1FhcEFLUmViU1hDQ2tERHJXT3FGQUd4S3RvNnYzcz0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!.
  • Zhao, J., and J. Yu. 2017. Exploration on nonlinear geo-electrical structures to detect coal mine goafs using three dimensional borehole resistivity imaging discrete approach. J. Differ. Equ. Appl 23 (1–2):312–21. doi:10.1080/10236198.2016.1226289.
  • Zou, X., C. Wang, Y. Wang, and H. Song. 2020. morphological feature description method of structural surface in borehole image during In‑Situ instrumentation. Rock Mech. Rock Eng 53 (7):2947–56. doi:10.1007/s00603-020-02072-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.