259
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Thermodynamic and environmental considerations of small turbojet engine under different design variables

Pages 820-838 | Received 13 Jul 2021, Accepted 09 Sep 2021, Published online: 04 Oct 2021

References

  • ATAG, 2021. ATAG. https://www.atag.org/facts-figures.html (Last accessed 21 April 2021)
  • Aydin, H., O. Turan, T. H. Karakoc, and A. Midilli. 2015. Exergetic sustainability indicators as a tool in commercial aircraft: A case study for a turbofan engine. International Journal of Green Energy 12:28–40. doi:10.1080/15435075.2014.889004.
  • Aydın, H., O. Turan, T. H. Karakoc, and A. Midilli. 2014. Sustainability assessment of PW6000 turbofan engine: An exergetic approach. International Journal of Exergy 14:388–412. doi:10.1504/IJEX.2014.061025.
  • Aygun, H., M. E. Cilgin, and O. Turan. 2021. Exergo-sustainability indicators of a target drone engine at dynamic loads. Energy 221:119803. doi:10.1016/j.energy.2021.119803.
  • Balli, O. 2017a. Advanced exergy analyses of an aircraft turboprop engine (TPE). Energy 124:599–612. doi:10.1016/j.energy.2017.02.121.
  • Balli, O. 2017b. Exergy modeling for evaluating sustainability level of a high by-pass turbofan engine used on commercial aircrafts. Applied Thermal Engineering 123:138–55. doi:10.1016/j.applthermaleng.2017.05.068.
  • Balli, O., Ekici, S., and Karakoc, T. H. 2021. TF33 Turbofan engine in every respect: Performance, environmental, and sustainability assessment. Environmental Progress & Sustainable Energy, 40(3), https://doi.org/10.1002/ep.13578
  • Balli, O., and H. Caliskan. 2021a. On-design and off-design operation performance assessmentsof an aero turboprop engine used on unmanned aerial vehicles (UAVs) in terms of aviation, thermodynamic, environmental and sustainability perspectives. Energy Conversion and Management 243:114403. doi:10.1016/j.enconman.2021.114403.
  • Balli, O., and H. Caliskan. 2021b. Turbofan engine performances from aviation, thermodynamic and environmental perspectives. Energy 232: 121031. https://doi.org/10.1016/j.energy.2021.121031
  • Balli, O., S. Ekici, and T. H. Karakoc. Tf33 turbofan engine in every respect: Performance, environmental and sustainability assessment. Environmental Progress & Sustainable Energy.
  • Bejan, A., G. Tsatsaronis, and M. J. Moran. 1995. Thermal design and optimization. New York: John Wiley & Sons.
  • Cengel, Y. A., and M. A. Boles. 2014. Thermodynamics: An engineering approach. 8th ed. New York: The McGraw-Hill Companies, Inc.
  • Dinc, A., Y. Sohret, and S. Ekici. 2020. Exergy analysis of a three-spool turboprop engine during the flight of a cargo aircraft. Aircraft Engineering and Aerospace Technology 92:1495–503. doi:10.1108/AEAT-05-2020-0087.
  • Dincer, I., M. Hussain, and I. Al-Zaharnah. 2004. Energy and exergy utilization in transportation sector of Saudi Arabia. Applied Thermal Engineering 24:525–38. doi:10.1016/j.applthermaleng.2003.10.011.
  • ICAO https://www.icao.int/environmental-protection/Documents/ICAO%20Environmental%20Report%202016.pdf(Last accessed 10 March 2021)
  • Koruyucu, E., S. Ekici, and T. H. Karakoc. 2021. Performing thermodynamic analysis by simulating the general characteristics of the two-spool turbojet engine suitable for drone and UAV propulsion. Journal of Thermal Analysis and Calorimetry 1–13, 145: 1303–1315. https://doi.org/10.1007/s10973-020-10449-9
  • Kotas, T. J. 2013. The exergy method of thermal plant analysis. Amsterdam: Elsevier.
  • Kurzke, J., 2012. GasTurb 12: A program to calculate design and off-design performance of gas turbines. User’s manual. GasTurb, Aachen, Germany.
  • Rakopoulos, C. D., and E. G. Giakoumis. 2006. Second-law analyses applied to internal combustion engines operation. Progress in Energy and Combustion Science 32:2–47. doi:10.1016/j.pecs.2005.10.001.
  • Sogut, M. Z. 2021. New approach for assessment of environmental effects based on entropy optimization of jet engine. Energy 234:121250. doi:10.1016/j.energy.2021.121250.
  • Sogut, M. Z., E. Yalcin, and T. H. Karakoc. 2017. Assessment of degradation effects for an aircraft engine considering exergy analysis. Energy 140:1417–26. doi:10.1016/j.energy.2017.03.093.
  • Sohret, Y., S. Ekici, O. Altuntas, A. Hepbasli, and T. H. Karakoc. 2016. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review. Progress in Aerospace Sciences 83:57–69. doi:10.1016/j.paerosci.2016.03.001.
  • Tsatsaronis, G. 2007. Definitions and nomenclature in exergy analysis and exergoeconomics. Energy 32:249–53. doi:10.1016/j.energy.2006.07.002.
  • Turan, O. 2012. Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications. Energy 46:51–61. doi:10.1016/j.energy.2012.03.030.
  • Van Gool, W. 1997. Energy policy: Fairy tales and factualities, in Innovation and technology—strategies and policies, 93–105. Netherland: Springer.
  • Yılmaz, I. 2017. Emissions from passenger aircraft at Kayseri Airport, Turkey. Journal of Air Transport Management 58:176–82. doi:10.1016/j.jairtraman.2016.11.001.
  • Zaporozhets, O., V. Volodymyr, and K. Synylo. 2020. Trends on current and forecasted aircraft hybrid electric architectures and their impact on environment. Energy 11881.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.