205
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improvement of vertical axis wind turbine performance by using the optimized adaptive flap by the Taguchi method

ORCID Icon
Pages 71-90 | Received 10 Apr 2023, Accepted 29 Oct 2023, Published online: 19 Nov 2023

References

  • Acır, A., M. E. Canlı, İ. Ata, and R. Cakiroglu. 2017. Parametric optimization of energy and exergy analyses of a novel solar air heater with grey relational analysis. Applied Thermal Engineering 122:330–38. doi:10.1016/j.applthermaleng.2017.05.018.
  • Allemand, G., A. Altman 2016. Post-stall performance improvement through bio- inspired passive covert feathers. 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA.
  • Athreya, S., and Y. D. Venkatesh. 2012. Application of Taguchi method for optimization of process parameters in improving the surface roughness of lathe facing operation. International Journal of Engineering, Science 1:13–19.
  • Balduzzi, F., A. Bianchini, R. Maleci, G. Ferrara, and L. Ferrari. 2016. Critical issues in the CFD simulation of darrieus wind turbines. Renew Energy 85:419–35. doi:10.1016/j.renene.2015.06.048.
  • Basker, I., and M. Nainangkuppam Venkatesan. 2022. Venkatesan MN.3D-CFD flow driven performance analysis of new non-cylindrical helical vertical axis wind turbine for fluctuating urban wind conditions, Energy Sources, Part A: Recovery. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 44 (1):2186–207. doi:10.1080/15567036.2022.2058654.
  • Bechert, D., M. Bruse, W. Hage, and Meyer, R. 1997. Biological surfaces and their technological application - laboratory and flight experiments on drag reduction and separation control. AIAA 28th Fluid Dynamics Conference. USA, Snowmass Village. Co, Agust 22, 1997. doi:10.2514/6.1997-1960.
  • Bhutta, M. M. A., N. Hayat, A. U. Farooq, Z. Ali, S. R. Jamil, and Z. Hussain. 2012. Vertical axis wind turbine–A review of various configurations and design techniques. Renewable and Sustainable Energy Reviews 16 (4):1926–39. doi:10.1016/j.rser.2011.12.004.
  • Bramesfeld, G., and M. D. Maughmer. 2002. Experimental investigation of self-actuating, upper-surface, high-lift-enhancing effectors. Journal of Aircraft 39 (1):120–24. doi:10.2514/2.2905.
  • Brownstein, I. D., M. Kinzel, and J. O. Dabiri. 2016. Performance enhancement of downstream vertical-axis wind turbines. Journal of Renewable and Sustainable Energy 8 (5):053306. doi:10.1063/1.4964311.
  • Cai, X., Y. Zhang, W. Ding, and S. Bian. 2019. The aerodynamic performance of H-type darrieus VAWT rotor with and without winglets: CFD simulations. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 1–12. doi:10.1080/15567036.2019.1691286.
  • Cakiroglu, R. 2022. Analysis of EDM machining parameters for keyway on ti-6Al-4V alloy and modelling by artificial neural network and regression analysis methods. Sādhanā 47 (3):1–17. doi:10.1007/s12046-022-01926-y.
  • Çakıroğlu, R., H. E. Tanürün, A. Acır, F. Üçgül, and S. Olkun. 2023. Optimization of NACA 4412 augmented with a gurney flap by using grey relational analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering 45 (3):167. doi:10.1007/s40430-023-04089-x.
  • Castelli, R. M., A. Englaro, and E. Benini. 2011. The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy 36 (8):4919–34. doi:10.1016/j.energy.2011.05.036.
  • Chen, W.-H., C.-Y. Chen, C.-Y. Huang, and C.-J. Hwang. 2017. Power output analysis and optimization of two straight-bladed vertical-axis wind turbines. Applied Energy 185:223–32. doi:10.1016/j.apenergy.2016.10.076.
  • Chen, W. H., J. S. Wang, M. H. Chang, J. K. Mutuku, and A. T. Hoang. 2021. Efficiency improvement of a vertical-axis wind turbine using a deflector optimized by Taguchi approach with modified additive method. Energy Conversion and Management 245:1146. doi:10.1016/j.enconman.2021.114609.
  • Chowdhury, A. M., H. Akimoto, and Y. Hara. 2016. Comparative CFD analysis of vertical axis wind turbine in upright and tilted configuration. Renew Energy 85:327–37. doi:10.1016/j.renene.2015.06.037.
  • Daroczy, L., G. Janiga, K. Petrasch, Webner, M., and Thévenin, D. 2015. Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors. Energy 90:680–90. doi:10.1016/j.energy.2015.07.102.
  • Davari, H. S., S. Kouravand, M. S. Davari, and Z. Kamalnejad. 2023. Numerical investigation and aerodynamic simulation of Darrieus H-rotor wind turbine at low Reynolds numbers. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 45 (3):6813–33. doi:10.1080/15567036.2023.2213670.
  • Deason, W. 2018. Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost. Renewable & Sustainable Energy Reviews 82:3168–78. doi:10.1016/j.rser.2017.10.026.
  • Dessoky, A., G. Bangga, T. Lutz, and E. Krämer. 2019. Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology. Energy 175:76–97. doi:10.1016/j.energy.2019.03.066.
  • Edwards, J. M., L. A. Danao, and R. J. Howell. 2015. PIV measurements and CFD simulation of the performance and flow physics and of a small-scale vertical axis wind turbine. Wind Energy 18 (2):201–17. doi:10.1002/we.1690.
  • Elkhoury, M., T. Kiwata, and E. Aoun. 2015. Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. Journal of Wind Engineering and Industrial Aerodynamics 139:111–23. doi:10.1016/j.jweia.2015.01.004.
  • Esteban, M., J. Portugal-Pereira, B. C. Mclellan, J. Bricker, H. Farzaneh, N. Djalilova, K. N. Ishihara, H. Takagi, and V. Roeber. 2018. 100% renewable energy system in Japan: Smoothening and ancillary services. Applied Energy 224:698–707. doi:10.1016/j.apenergy.2018.04.067.
  • Gad-El-Hak, M. 2000. Flow control: Passive. Active. And reactive flow Management. London: Cambridge University Press.
  • Ghasemian, M., Z. N. Ashrafi, and A. Sedaghat. 2017. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and Management 149:87–100. doi:10.1016/j.enconman.2017.07.016.
  • Govind, B. 2017. Increasing the operational capability of a horizontal axis wind turbine by its integration with a vertical axis wind turbine. Applied Energy 199:479–94. doi:10.1016/j.apenergy.2017.04.070.
  • Han, J.-W., W.-Y. Zhu, and Z.-T. Ji. 2019. Comparison of veracity and application of different CFD turbulence models for refrigerated transport. Artificial Intelligence in Agriculture 3:11–17. doi:10.1016/j.aiia.2019.10.001.
  • Hao, W., M. Bashir, C. Li, and C. Sun. 2021. Flow control for high-solidity vertical axis wind turbine based on adaptive flap. Energy Conversion and Management 249:114845. doi:10.1016/j.enconman.2021.114845.
  • Hao, W., and C. Li. 2020. Performance improvement of adaptive flap on flow separation control and its effect on VAWT. Energy 213:118809. doi:10.1016/j.energy.2020.118809.
  • Hassanpour, M., and L. N. Azadani. 2021. Aerodynamic optimization of the configuration of a pair of vertical axis wind turbines. Energy Conversion and Management 238:114069. doi:10.1016/j.enconman.2021.114069.
  • Hau, E. 2006. Wind turbines: Fundamentals, technologies, application, economics. 2nd ed. Berlin: Springer.
  • Hu, Y., and S. S. Rao. 2011. Robust design of horizontal axis wind turbines using Taguchi method. Journal of Mechanical Design 133 (11):111009. doi:10.1115/1.4004989.
  • Kaya, A. F., and A. Acır. 2022. Enhancing the aerodynamic performance of a Savonius wind turbine using Taguchi optimization method. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 44 (2):5610–26. doi:10.1080/15567036.2022.2088898.
  • Kaya, A. F., H. E. Tanurun, and A. Acır. 2022. Numerical investigation of radius dependent solidity effect on H-type vertical axis wind turbines. Politeknik Dergisi 25 (3):1007–19. doi:10.2339/politeknik.799767.
  • Kernstine, K., C. Moore, A. Cutler, R. Mittal 2008. Initial characterization of self-activated movable flaps, “pop-up feathers”. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA.
  • Larose, G., A. D. Auteuil 2008. Effect of local air compressibility on the aerodynamics of rectangular prisms at Mach number below 0.3. 6th International Colloquium on: Bluff Bodies Aerodynamics & Applications. Milano. Italy.
  • Mahmood, Q., M. Younas, M. G. B. Ashiq, S. M. Ramay, A. Mahmood, and H. M. Ghaithan. 2021. First principle study of lead-free double perovskites halides Rb2Pd(Cl/Br)(6) for solar cells and renewable energy devices: A quantum DFT. International Journal of Energy Research 45 (10):14995–15004.
  • Mazarbhuiya, H. M. S. M., A. Biswas, and K. K. Sharma. 2020. Effect of blade attachments on the performance of an asymmetric blade H-Darrieus turbine at low wind speed. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 2020:1–18. doi:10.1080/15567036.2020.1826601.
  • Mohamed, M. H., A. M. Ali, and A. A. Hafiz. 2015. CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter. Engineering Science and Technology, an International Journal 18 (1):1–13. doi:10.1016/j.jestch.2014.08.002.
  • Mohamed, O. S., A. A. Ibrahim, A. K. Etman, A. A. Abdelfatah, and A. M. R. Elbaz. 2020. Numerical investigation of Darrieus wind turbine with slotted airfoil blades. Energy Convers Manag X 5:100026. doi:10.1016/j.ecmx.2019.100026.
  • Moon, H., J. Jeong, S. Park, K. Ha, and J. H. Jeong. 2023. Numerical and experimental validation of vortex generator effect on power performance improvement in MW-class wind turbine blade. Renewable Energy 212:443–54. doi:10.1016/j.renene.2023.04.104.
  • Nia, B. B., M. Ja’fari, A. R. Ranjbar, and A. J. Jaworski. 2023. Passive control of boundary layer flow separation on a wind turbine airfoil using vortex generators and slot. Ocean Engineering 283:283, 115170. doi:10.1016/j.oceaneng.2023.115170.
  • Ni, L., W. Miao, C. Li, and Q. Liu. 2021. Impacts of gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations. Energy 215:118915. doi:10.1016/j.energy.2020.118915.
  • Qasemi, K., and L. N. Azadani. 2020. Optimization of the power output of a vertical axis wind turbine augmented with a flat plate deflector. Energy 202:117745. doi:10.1016/j.energy.2020.117745.
  • Rezaeiha, A., I. Kalkman, and B. Blocken. 2017. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment. Renewable Energy 107:373–85. doi:10.1016/j.renene.2017.02.006.
  • Schatz, M., U. Bunge, H. Lübcke, and F. Thiele. 2001. Numerical study of separation control by Movable Flaps. In Notes on Numerical Fluid Mechanics, edited by P. Thiede, vol. 76, 385–390. Notes on Numerical Fluid Mechanics (NNFM). Germany: Springer doi:10.1007/978-3-540-45359-8_41.
  • Singh, A. D. 2016. Self-adaptive flaps on low aspect ratio wings at low Reynolds numbers. Aerospace Science and Technology 59:78–93. doi:10.1016/j.ast.2016.10.006.
  • Subramanian, A., S. A. Yogesh, H. Sivanandan, A. Giri, M. Vasudevan, V. Mugundhan, and Velamati, R. S. 2017. Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy 133:179–90. doi:10.1016/j.energy.2017.05.118.
  • Tanürün, H. E., and A. Acır. 2022. Investigation of the hydrogen production potential of the H-Darrieus turbines combined with various wind-lens. International Journal of Hydrogen Energy 47 (55):23118–38. doi:10.1016/j.ijhydene.2022.04.196.
  • Trivellato, F., and M. R. Castelli. 2014. On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis. Renewable Energy 62:53–62. doi:10.1016/j.renene.2013.06.022.
  • Tunio, I. A., M. A. Shah, T. Hussain, K. Harijan, N. H. Mirjat, and A. H. Memon. 2020. Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine. Renewable Energy 153:143–54. doi:10.1016/j.renene.2020.02.012.
  • Wang, Z., A. Ozbay, W. Tian, and H. Hu. 2018. An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine. Energy 147:94–109. doi:10.1016/j.energy.2018.01.020.
  • Wang, C. H., and J. Schlüter. 2012. Stall control with feathers: Self-activated flaps on finite wings at low Reynolds numbers. Comptes Rendus Mécanique 340 (1):57–66. doi:10.1016/j.crme.2011.11.001.
  • Wang, Z., W. Tian, and H. Hu. 2018. A comparative study on the aeromechanic performances of upwind and downwind horizontal-axis wind turbines. Energy Conversion and Management 163:100–10. doi:10.1016/j.enconman.2018.02.038.
  • Wang, Z., Y. Wang, and M. Zhuanga. 2018. Improvement of the aerodynamic performance of vertical axis wind turbines with leading-edge serrations and helical blades using CFD and Taguchi method. Energy Conversion and Management 177:107–21. doi:10.1016/j.enconman.2018.09.028.
  • Wang, Z., and M. Zhuang. 2017. Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios. Applied Energy 208:1184–97. doi:10.1016/j.apenergy.2017.09.034.
  • Watanabe, K., S. Takahashi, and Y. Ohya. 2016. Application of a diffuser structure to vertical-axis wind turbines. Energies 9 (6):406. doi:10.3390/en9060406.
  • Wei, Z., T. H. New, and Y. D. Cui. 2015. An experimental study on flow separation control of hydrofoils with leading-edge tubercles at low Reynolds number. Ocean Engineering 108:336–49. doi:10.1016/j.oceaneng.2015.08.004.
  • Yamazaki, W., and Y. Arakawa. 2016. Numerical/Experimental investigation of airfoil shape for small VAWT. 34th wind energy symposium, 1733.
  • Yan, Y., E. Avital, J. Williams, and J. Cui. 2019. CFD analysis for the performance of microvortex generator on aerofoil and vertical axis turbine. Journal of Renewable and Sustainable Energy 11 (4):043302. doi:10.1063/1.5110422.
  • Zuo, W., X. Wang, and S. Kang. 2016. Numerical simulations on the wake effect of H-type vertical axis wind turbines. Energy 106:691–700. doi:10.1016/j.energy.2016.02.127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.