67
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effect of spray nozzles failure on SO2 removal efficiency

, ORCID Icon & ORCID Icon
Pages 148-159 | Received 25 Apr 2023, Accepted 03 Nov 2023, Published online: 21 Nov 2023

References

  • Arif, A., C. Stephen, D. Branken, R. Everson, H. Neomagus, S. Piketh 2015. Modeling Wet Flue Gas Desulfurization. Conference of the National Association for Clean Air, South Africa, Oct. 1–11.
  • Bing, L., S. Yongqiang, Z. Qilong, Z. Baoying, D. Haoran, and Z. Can. 2019, July. Study on performance optimization of wet desulfurization of an Ultra-low emission coal-fired power unit. IOP Conference Series: Earth and Environmental Science 295 (5):052032. (IOP Publishing) doi:10.1088/1755-1315/295/5/052032.
  • Brogren, C., and H. T. Karlsson. 1997. Modelling the absorption of SO2 in a spray scrubber using the penetration theory. Chemical Engineering Science 50 (18):3085–99. doi:10.1016/S0009-2509(97)00126-7.
  • Carletti, C., C. De Blasio, M. Miceli, R. Pirone, and T. Westerlund. 2017. Ultrasonic enhanced limestone dissolution: Experimental and mathematical modeling. Chemical Engineering & Processing 118:26–36. doi:10.1016/j.cep.2017.04.012.
  • Cordoba, P. 2015. Status of flue gas desulphurization (FGD) systems from coal-fired power plants: Overview of the Physic-Chemical control of wet limestone FGDs. Fuel 144:274–86. doi:10.1016/j.fuel.2014.12.065.
  • Cui, L., J. Lu, X. Song, L. Tang, Y. Li, and Y. Dong. 2021. Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization. Fuel 285:119209. doi:10.1016/j.fuel.2020.119209.
  • Gonul, H. I., and M. Bilen. 2020. Modeling absorbers in WFGD system and prediction of SO2 removal rate based on size. Parameters “Journal of Energy Resources Technology 142 (8):7. doi:10.1115/1.4046384.
  • Gutiérrez Ortiz, F. J., F. Vidal, P. Ollero, L. Salvador, V. Cortés, and A. Gimenez. 2006. Pilot-plant technical assessment of wet flue gas desulfurization using limestone. Industrial & Engineering Chemistry Research 45 (4):1466–77. doi:10.1021/ie051316o.
  • Liu, P., L. K. Yang, and L. Sun. 2021. Multi-objective economic model predictive control of wet limestone flue gas desulfurisation system. Process Safety and Environmental Protection 150:269–80. doi:10.1016/j.psep.2021.04.012.
  • Luca, M., and I. Fabio. 2008. Multiphase Euler–Lagrange CFD simulation applied to wet flue gas desulphurisation technology. Multiphase Flow 35 (2):185–94. doi:10.1016/j.ijmultiphaseflow.2008.09.005.
  • Nygaard, G., S. Kiil, E. Johnsson, J. Jensen, J. Jensen, J. Hansen, F. Fogh, and K. Johansen. 2004. Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulphurisation spray absorber. Fuel 83 (9):1151–64. doi:10.1016/j.fuel.2003.12.007.
  • Pang, C., D. Duan, Z. Zhou, S. Han, L. Yao, C. Zheng, and J. Yang, X. Gao. 2022. An integrated LSTM-AM and SPRT method for fault early detection of forced-oxidation system in wet flue gas desulfurization. Process Safety and Environmental Protection 160:242–54. doi:10.1016/j.psep.2022.01.062.
  • Petrovic, H., D. Stevanovic, and M. Jankovic 2016. Dynamics of wet flue gas desulphurization in spray absorber. Proceeding of ECOS International Conference, Portorož, Slovenia.
  • Ren, R., Y. Chen, F. Shi, X. Huang, 2009. Mass transfer model of the wet flue gas desulfurization with Lime. 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China.
  • Tontu, M. 2022. A wet type flue gas desulphurisation system used in a coal-fired power plant: A case study. International Journal of Global Warming 26 (1):104–19. doi:10.1504/IJGW.2022.120070.
  • Warych, J., and M. Szymanowski. 2001. Model of the wet limestone flue gas desulfurization process for cost optimization. Industrial & Engineering Chemistry Research 40 (12):2597–605. doi:10.1021/ie0005708.
  • Yang, H., Y. Zhang, C. Zheng, X. Wu, L. Chen, X. Gao, and J. S. Fu. 2018. Energy consumption and energy-saving potential analysis of pollutant abatement systems in a 1000-MW coal-fired power plant. Journal of the Air & Waste Management Association 68 (9):920–30. doi:10.1080/10962247.2018.1454992.
  • Yao, C., C. Hao, H. Sheng, L. Ling, C. Wei, and Z. Yanming. 2022. “Intelligent online evaluation Model of WFGD system performance based on gas-liquid Mass Transfer Data Analysis.” 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 103–06. doi:10.1109/EEBDA53927.2022.9744953.
  • Zhao, Z., H. Fan, Q. Li, C. Liu, Z. Chen, L. Li, and C. Zheng, X. Gao. 2022. Hybrid modeling and operating optimization method of oxidation process of wet flue gas desulfurization (WFGD) system. Chemical Engineering Research and Design 188:406–16. doi:10.1016/j.cherd.2022.09.045.
  • Zhao, Z., Q. Li, Y. Shao, C. Tan, C. Zhou, H. Fan, L. Li, C. Zheng, and X. Gao. 2023. Prediction of inlet SO2 concentration of wet flue gas desulfurization (WFGD) by operation parameters of coal-fired boiler. Environmental Science and Pollution Research 30 (18):53089–102. doi:10.1007/s11356-023-25988-5.
  • Zhong, Y., X. Gao, W. Huo, Z. Luo, M. Ni, and K. Cen. 2008. A model for performance optimization of wet flue gas desulfurization systems of power plants. Fuel Processing Technology 89 (11):1025–32. doi:10.1016/j.fuproc.2008.04.004.
  • Zhu, J., S. Ye, J. Nai, Z. Wu, Z. Liu, and Y. Yang. 2015. A concise algorithm for calculating absorption height in spray tower for wet limestone–gypsum flue gas desulfurization. Fuel Processing Technology 129:15–23. doi:10.1016/j.fuproc.2014.07.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.