124
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effect of phase change material application in double skin Façade on energy saving of residential buildings considering different climates: a case study

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 209-227 | Received 03 May 2023, Accepted 07 Nov 2023, Published online: 27 Nov 2023

References

  • Ahangari, M., and M. Maerefat. 2019. An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions. Sustainable Cities and Society 44:120–29. doi:10.1016/j.scs.2018.09.008.
  • Ahmed, M. M., A. K. Abel-Rahman, A. H. H. Ali, and M. Suzuki. 2016. Double skin façade: The state of art on building energy efficiency. Journal of Clean Energy Technologies 4 (1):84–89. doi:10.7763/JOCET.2016.V4.258.
  • Alam, M., H. Jamil, J. Sanjayan, and J. Wilson. 2014. Energy saving potential of phase change materials in major Australian cities. Energy & Buildings 78:192–201. doi:10.1016/j.enbuild.2014.04.027.
  • Alayi, R., M. H. Ahmadi, A. R. Visei, S. Sharma, and A. Najafi. 2021. Technical and environmental analysis of photovoltaic and solar water heater cogeneration system: A case study of Saveh city. International Journal of Low-Carbon Technologies 16 (2):447–53. doi:10.1093/ijlct/ctaa077.
  • Alberto, A., N. M. Ramos, and R. M. Almeida. 2017. Parametric study of double-skin facades performance in mild climate countries. Journal of Building Engineering 12:87–98. doi:10.1016/j.jobe.2017.05.013.
  • Ameur, M., Y. Kharbouch, and A. Mimet. 2020. Optimization of passive design features for a naturally ventilated residential building according to the bioclimatic architecture concept and considering the northern Morocco climate. In Building simulation, 677–89. Springer. doi:10.1007/s12273-019-0593-6.
  • Asrami, R. F., A. Sohani, E. Saedpanah, and H. Sayyaadi. 2021. Towards achieving the best solution to utilize photovoltaic solar panels for residential buildings in urban areas. Sustainable Cities and Society 71:102968. doi:10.1016/j.scs.2021.102968.
  • Auzeby, M., S. Wei, C. Underwood, J. Tindall, C. Chen, H. Ling, and R. Buswell. 2016. Effectiveness of using phase change materials on reducing summer overheating issues in UK residential buildings with identification of influential factors. Energies 9 (8):605. doi:10.3390/en9080605.
  • Balaras, C. 1996. The role of thermal mass on the cooling load of buildings. An overview of computational methods. Energy and Buildings 24 (1):1–10. doi:10.1016/0378-7788(95)00956-6.
  • Baldinelli, G. 2009. Double skin façades for warm climate regions: Analysis of a solution with an integrated movable shading system. Building and Environment 44 (6):1107–18. doi:10.1016/j.buildenv.2008.08.005.
  • Bevilacqua, P., R. Bruno, and N. Arcuri. 2020. Green roofs in a Mediterranean climate: Energy performances based on in-situ experimental data. Renewable Energy 152:1414–30. doi:10.1016/j.renene.2020.01.085.
  • De Gracia, A., L. Navarro, A. Castell, and L. F. Cabeza. 2015. Energy performance of a ventilated double skin facade with PCM under different climates. Energy and Buildings 91:37–42. doi:10.1016/j.enbuild.2015.01.011.
  • De Gracia, A., L. Navarro, A. Castell, Á. Ruiz-Pardo, S. Alvárez, and L. F. Cabeza. 2013. Experimental study of a ventilated facade with PCM during winter period. Energy and Buildings 58:324–32. doi:10.1016/j.enbuild.2012.10.026.
  • Diarce, G., Á. Campos-Celador, K. Martin, A. Urresti, A. García-Romero, and J. Sala. 2014. A comparative study of the CFD modeling of a ventilated active façade including phase change materials. Applied Energy 126:307–17. doi:10.1016/j.apenergy.2014.03.080.
  • Diarce, G., A. Urresti, A. García-Romero, A. Delgado, A. Erkoreka, C. Escudero, and Á. Campos-Celador. 2013. Ventilated active façades with PCM. Applied Energy 109:530–37. doi:10.1016/j.apenergy.2013.01.032.
  • Fallahi, A., F. Haghighat, and H. Elsadi. 2010. Energy performance assessment of double-skin façade with thermal mass. Energy and Buildings 42 (9):1499–509. doi:10.1016/j.enbuild.2010.03.020.
  • Fazelpour, F., E. Markarian, N. Ziasistani. 2018. DSF energy performance assessment considering different climatic regions of Iran and design parameters. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 1–5. IEEE. doi:10.1109/eeeic.2018.8493827.
  • Fokaides, P. A., A. Kylili, and S. A. Kalogirou. 2015. Phase change materials (PCMs) integrated into transparent building elements: A review. Materials for Renewable and Sustainable Energy 2 (4):1–13. doi:10.1007/s40243-015-0047-8.
  • Ghaffarianhoseini, A., A. Ghaffarianhoseini, U. Berardi, J. Tookey, D. H. W. Li, and S. Kariminia. 2016. Exploring the advantages and challenges of double-skin façades (DSFs. Renewable and Sustainable Energy Reviews 60:1052–65. doi:10.1016/j.rser.2016.01.130.
  • Gratia, E., and A. De Herde. 2007. The most efficient position of shading devices in a double-skin facade. Energy and Buildings 39 (3):364–73. doi:10.1016/j.enbuild.2006.09.001.
  • Hamidi, Y., Z. Aketouane, M. Malha, D. Bruneau, A. Bah, and R. Goiffon. 2021. Integrating PCM into hollow brick walls: Toward energy conservation in Mediterranean regions. Energy and Buildings 248:111214. doi:10.1016/j.enbuild.2021.111214.
  • Ihara, T., A. Gustavsen, and B. P. Jelle. 2015. Effect of facade components on energy efficiency in office buildings. Applied Energy 158:422–32. doi:10.1016/j.apenergy.2015.08.074.
  • International Energy Agency. 2013. Transition to sustainable buildings: Strategies and opportunities to 2050 OECD/IEA. doi:10.1787/9789264202955-en.
  • Joe, J., W. Choi, H. Kwon, and J.-H. Huh. 2013. Load characteristics and operation strategies of building integrated with multi-story double skin facade. Energy and Buildings 60:185–98. doi:10.1016/j.enbuild.2013.01.015.
  • Kamal-Chaoui, L., and A. Robert. 2009. Competitive Cities and Climate Change. OECD Regional Development Working Papers. doi:10.1787/218830433146.
  • Karlessi, T., and M. Santamouris. 2013. Research on thermochromic and PCM doped infrared reflective coatings. In Advances in the Development of Cool Materials for the Built Environment, 103–83. doi:10.2174/9781608054718113010007.
  • Kasaeian, A., E. Pourfayaz, F. Khodabandeh, W.-M. Yan, and W.-M. Yan. 2017. Experimental studies on the applications of PCMs and nano-PCMs in buildings: A critical review. Energy and Buildings 154:96–112. doi:10.1016/j.enbuild.2017.08.037.
  • Kenzhekhanov, S., S. A. Memon, and I. Adilkhanova. 2020. Quantitative evaluation of thermal performance and energy saving potential of the building integrated with PCM in a subarctic climate. Energy 192:116607. doi:10.1016/j.energy.2019.116607.
  • Krarti, M., and M. Aldubyan. 2022. Peak demand-based optimization approach for building retrofits: Case study of Saudi residential buildings. Energy Efficiency 15 (8):69. doi:10.1007/s12053-022-10077-2.
  • Kümpel, A., P. Stoffel, and D. Müller. 2022. Development of a long-term operational optimization model for a building energy system supplied by a geothermal field. Journal of Thermal Science 31 (5):1293–301. doi:10.1007/s11630-022-1616-7.
  • Kuznik, F., and J. Virgone. 2009. Experimental assessment of a phase change material for wall building use. Applied Energy 86 (10):2038–46. doi:10.1016/j.apenergy.2009.01.004.
  • Li, Y., J. Darkwa, and G. Kokogiannakis. 2017. Heat transfer analysis of an integrated double skin façade and phase change material blind system. Building and Environment 125:111–21. doi:10.1016/j.buildenv.2017.08.034.
  • Li, X., and D. Rodriguez. 2021. Optimization of a building energy performance by a multi-objective optimization, using sustainable energy combinations. Evolving Systems 12 (4):949–63. doi:10.1007/s12530-020-09350-5.
  • Liu, Y., H. Ming, X. Luo, L. Hu, and Y. Sun. 2023. Timetabling optimization of classrooms and self-study rooms in university teaching buildings based on the building controls virtual test bed platform considering energy efficiency. In Building simulation, 263–77. Springer. doi:10.1007/s12273-022-0938-4.
  • Ma, L., H. Ge, L. Wang, and L. Wang. 2021. Optimization of passive solar design and integration of building integrated photovoltaic/thermal (BIPV/T) system in northern housing. In Building simulation, 1467–86. Springer. doi:10.1007/s12273-021-0763-1.
  • Pan, D., M. Chan, S. Deng, and Z. Lin. 2012. The effects of external wall insulation thickness on annual cooling and heating energy uses under different climates. Applied Energy 97:313–18. doi:10.1016/j.apenergy.2011.12.009.
  • Pomponi, F., P. A. Piroozfar, R. Southall, P. Ashton, and E. R. Farr. 2016. Energy performance of Double-Skin Façades in temperate climates: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews 54:1525–36. doi:10.1016/j.rser.2015.10.075.
  • Radhi, H., S. Sharples, and F. Fikiry. 2013. Will multi-facade systems reduce cooling energy in fully glazed buildings? A scoping study of UAE buildings. Energy and Buildings 56:179–88. doi:10.1016/j.enbuild.2012.08.030.
  • Ramakrishnan, S., X. Wang, J. Sanjayan, and J. Wilson. 2017. Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events. Applied Energy 194:410–21. doi:10.1016/j.apenergy.2016.04.084.
  • Ronghui, S., and N. Liangrong. 2022. An intelligent fuzzy-based hybrid metaheuristic algorithm for analysis the strength, energy and cost optimization of building material in construction management. Engineering with Computers 38 (Suppl 4):2663–80. doi:10.1007/s00366-021-01420-9.
  • Sharma, M. K., S. Preet, J. Mathur, A. Chowdhury, and S. Mathur. 2021. Exploring the advantages of photo-voltaic triple skin façade in hot summer conditions. Solar Energy 217:317–27. doi:10.1016/j.solener.2021.02.020.
  • Shaviv, E., A. Yezioro, and I. G. Capeluto. 2001. Thermal mass and night ventilation as passive cooling design strategy. Renewable Energy 24 (3–4):445–52. doi:10.1016/S0960-1481(01)00027-1.
  • Souza, L. C. O. D., H. A. D. Souza, and E. F. Rodrigues. 2018. Experimental and numerical analysis of a naturally ventilated double-skin façade. Energy & Buildings 165:328–39. doi:10.1016/j.enbuild.2018.01.048.
  • Starke, L. 2007. State of the world 2007: Our urban future: A worldwatch institute report on progress toward a sustainable society. London: Taylor & Francis.
  • Stritih, U., V. Tyagi, R. Stropnik, H. Paksoy, F. Haghighat, and M. M. Joybari. 2018. Integration of passive PCM technologies for net-zero energy buildings. Sustainable Cities and Society 41:286–95. doi:10.1016/j.scs.2018.04.036.
  • Su, Z., X. Li, and F. Xue. 2017. Double-skin façade optimization design for different climate zones in China. Solar Energy 155:281–90. doi:10.1016/j.solener.2017.06.042.
  • Tian, S., X. Su, X. Shao, and L. Wang. 2020. Optimization and evaluation of a solar energy, heat pump and desiccant wheel hybrid system in a nearly zero energy building. In Building simulation, 1291–303. Springer. doi:10.1007/s12273-020-0627-0.
  • Tsikaloudaki, K., K. Laskos, T. Theodosiou, and D. Bikas. 2015. The energy performance of windows in Mediterranean regions. Energy & Buildings 92:180–87. doi:10.1016/j.enbuild.2015.01.059.
  • Wong, P. C., D. Prasad, and M. Behnia. 2008. A new type of double-skin façade configuration for the hot and humid climate. Energy and Buildings 40 (10):1941–45. doi:10.1016/j.enbuild.2008.04.014.
  • Xue, Q., Z. Wang, and Q. Chen. 2022. Multi-objective optimization of building design for life cycle cost and CO2 emissions: A case study of a low-energy residential building in a severe cold climate. In Building simulation, 83–98. Springer. doi:10.1007/s12273-021-0796-5.
  • Yang, L., and Y. Li. 2008. Cooling load reduction by using thermal mass and night ventilation. Energy and Buildings 40 (11):2052–58. doi:10.1016/j.enbuild.2008.05.014.
  • Zemella, G., and A. Faraguna. 2014. Evolutionary optimisation of facade design: A new approach for the design of building envelopes. London: Springer.
  • Zhao, J., and Y. Du. 2020. Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: A case study for office building in different climatic regions of China. Solar Energy 206:997–1017. doi:10.1016/j.solener.2020.05.090.
  • Zhou, J., and Y. Chen. 2010. A review on applying ventilated double-skin facade to buildings in hot-summer and cold-winter zone in China. Renewable and Sustainable Energy Reviews 14 (4):1321–28. doi:10.1016/j.rser.2009.11.017.
  • Zhou, J., G. Zhang, Y. Lin, and Y. Li. 2008. Coupling of thermal mass and natural ventilation in buildings. Energy & Buildings 40 (6):979–86. doi:10.1016/j.enbuild.2007.08.001.
  • Zhu, N., Z. Ma, and S. Wang. 2009. Dynamic characteristics and energy performance of buildings using phase change materials: A review. Energy Conversion and Management 50 (12):3169–81. doi:10.1016/j.enconman.2009.08.019.
  • Ziasistani, N., and F. Fazelpour. 2019. Comparative study of DSF, PV-DSF and PV-DSF/PCM building energy performance considering multiple parameters. Solar Energy 187:115–28. doi:10.1016/j.solener.2019.05.040.
  • Zomorodian, Z. S., and M. Tahsildoost. 2018. Energy and carbon analysis of double skin façades in the hot and dry climate. Journal of Cleaner Production 197:85–96. doi:10.1016/j.jclepro.2018.06.178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.