143
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterizing pulverized coal combustion for high-ash content Indian coal

ORCID Icon, , &
Pages 244-261 | Received 19 Jun 2023, Accepted 05 Nov 2023, Published online: 27 Nov 2023

References

  • Aich, S., D. Behera, B. K. Nandi, and S. Bhattacharya. 2020. Relationship between proximate analysis parameters and combustion behaviour of high ash Indian coal. The International Journal of Coal Science & Technology 7 (4):766–77. doi:10.1007/s40789-020-00312-5.
  • Alvarez, L., M. Gharebaghi, J. Jones, M. Pourkashanian, A. Williams, J. Riaza, C. Pevida, J. J. Pis, and F. Rubiera. 2013. CFD modelling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release. Applied Energy 104:653–65. doi:10.1016/j.apenergy.2012.11.058.
  • Baum, M. M., and P. J. Street. 1971. Predicting the combustion behaviour of coal particles. Combustion Science and Technology 3 (5):231–43. doi:10.1080/00102207108952290.
  • Behera, D. 2021. Studies on variations of coal properties and combustion characteristics with coal density. PhD thesis, IIT (ISM) Dhanbad, India.
  • Botelho, T., M. Costa, M. Wilk, and A. Magdziarz. 2018. Evaluation of the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace. Fuel 212:95–100. doi:10.1016/j.fuel.2017.09.118.
  • Cai, L., C. Zou, Y. Guan, H. Jia, L. Zhang, and C. Zheng. 2016. Effect of steam on ignition of pulverized coal particles in oxy-fuel combustion in a drop tube furnace. Fuel 182:958–66. doi:10.1016/j.fuel.2016.05.083.
  • Cai, L., C. Zou, Y. Liu, K. Zhou, Q. Han, and C. Zheng. 2015. Numerical and experimental studies on the ignition of pulverized coal in O2/H2O atmospheres. Fuel 139:198–205. doi:10.1016/j.fuel.2014.08.038.
  • Chen, Y., S. Mori, and W. P. Pan. 1995. Estimating the combustibility of various coals by TG-DTA. Energy and Fuels 9 (1):71–74. doi:10.1021/ef00049a011.
  • Chen, J., L. Mu, J. Cai, P. Yao, X. Song, H. Yin, and A. Li. 2015. Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermo-gravimetric analysis. Bioresource Technology 198:115–23. doi:10.1016/j.biortech.2015.09.011.
  • Dhaneswar, S. R., and S. V. Pisupati. 2012. Oxy-fuel combustion: The effect of coal rank and the role of char-CO 2 reaction. Fuel Processing Technology 102:156–65. doi:10.1016/j.fuproc.2012.04.029.
  • Faeth, G. M. 1977. Current status of droplet and liquid combustion. Progress in Energy and Combustion Science 3 (4):191–224. doi:10.1016/0360-1285(77)90012-0.
  • Gilot, P., A. Brillard, J. F. Brilhac, and C. Schönnenbeck. 2017. A simplified model accounting for the combustion of pulverized coal char particles in a drop tube furnace. Energy and Fuels 31 (10):391–403. doi:10.1021/acs.energyfuels.7b01756.
  • Görner, K. 1991. Technische Verbrennungssysteme. Grundlagen, Modellbildung, Simulation. Berlin, Heidelberg, New York: Springer.
  • Gupta, D. 2009. Modeling of Coal Fired Boilers. PhD thesis, University of Pune, India.
  • Hicyilmaz, C., and N. E. Aitun. 2003. Comparison of the combustion characteristics of three different fossil fuels from Turkey. 1st International Mining Congress and Exhibition of Turkey-IMCET 2003:401–06.
  • Jones, W. P., and R. P. Lindstedt. 1988. Global reaction schemes for hydrocarbon combustion. Combustion and Flame 73 (3):233. doi:10.1016/0010-2180(88)90021-1.
  • Jovanovic, R., A. Milewska, B. Swiatkowski, A. Goanta, and H. Spliethoff. 2012. Sensitivity analysis of different devolatilization models on predicting ignition point position during pulverized coal combustion in O2/N2 and O2/CO2 atmospheres. Fuel 101:23–37. doi:10.1016/j.fuel.2011.02.024.
  • Khatami, R., C. Stivers, and Y. A. Levendis. 2012. Ignition characteristics of single coal particles from three different ranks in O 2/N 2 and O 2/CO 2 atmospheres. Combustion and Flame 159 (12):3554–68. doi:10.1016/j.combustflame.2012.06.019.
  • Kizgut, S., D. Cuhadaroglu, and I. Toroglu. 2003. Thermogravimetric characterization of Turkish bituminous coals for combustion. Turkish Journal of Chemistry 27:521–28.
  • Kumar, P., and B. K. Nandi. 2023. Impact of wheat straw and petroleum coke blending on combustion behavior of high ash coal. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 45 (1):3125–37. doi:10.1080/15567036.2023.2193152.
  • Kurose, R., M. Ikeda, and H. Makino. 2001. Combustion characteristics of high ash coal in a pulverized coal combustion. Fuel 80 (10):1447–55. doi:10.1016/S0016-2361(01)00020-5.
  • Launder, B. E., and D. B. Spalding. 1972. Lectures in mathematical models of turbulence. London, England: Academic Press.
  • Levendis, Y. A., K. Joshi, R. Khatami, and A. F. Sarofim. 2011. Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse. Combustion and Flame 158 (3):452–65. doi:10.1016/j.combustflame.2010.09.007.
  • Liu, X., M. Chen, and Y. Wei. 2015. Kinetics based on two-stage scheme for co-combustion of herbaceous biomass and bituminous coal. Fuel 143:577–85. doi:10.1016/j.fuel.2014.11.085.
  • Magnussen, B. F. 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. 19thAerospace Sciences Meeting, St, Louis, USA.
  • Ma, L., A. Guo, Q. Fang, T. Wang, C. Zhang, and G. Chen. 2018. Combustion interactions of blended coals in an O2/CO2 mixture in a drop-tube furnace: Experimental investigation and numerical simulation. Applied Thermal Engineering 145:184–200. doi:10.1016/j.applthermaleng.2018.09.033.
  • Manuel, G. P., V. Esa and H. Timo. 2016. A brief overview of the drag laws used in the Lagrangian tracking of ash trajectories for boiler fouling CFD models. 26th conference on Impacts of Fuel Quality on Power Production, Prague, September 19-23.
  • Mazumdar, B. K. 2000. Theoretical oxygen requirement for coal combustion: Relationship with its calorific value. Fuel 79 (11):1413–19. doi:10.1016/S0016-2361(99)00272-0.
  • Mikulcic, H., E. von Berg, M. Vujanovic, P. Priesching, L. Perkovic, R. Tatschl, and N. Duic. 2012. Numerical modelling of calcination reaction mechanism for cement production. Chemical Engineering Science 69 (1):607–15. doi:10.1016/j.ces.2011.11.024.
  • Ministry of Power, Government of India, December 2021 report.
  • Mohanta, S., and B. C. Meikap. 2016. Pre-combustion removal possibility of hazardous trace elements from Indian high-ash coal by coal preparation technologies. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 38 (12):1693–98. doi:10.1080/15567036.2014.964815.
  • Molina, A., J. J. Murphy, F. Winter, B. S. Haynes, L. G. Blevins, and C. R. Shaddix. 2009. Pathways for conversion of char nitrogen to nitric oxide during pulverized coal combustion. Combustion and Flame 156 (3):574–87. doi:10.1016/j.combustflame.2008.11.012.
  • Raithby, G. D., and E. H. Chui. 1990. A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. Journal of Heat Transfer 112 (2):415–23. doi:10.1115/1.2910394.
  • Report of the Conference of the parties on its twenty-sixth session, held in Glasgow from 31 October to 13 November 2021, FCCC/CP/2021/12. 2021. Glasgow Climate Change Conference.
  • Riaza, J., R. Khatami, Y. A. Levendis, L. Álvarez, M. V. Gil, C. Pevida, F. Rubiera, and J. J. Pis. 2014. Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combustion and Flame 161 (4):1096–108. doi:10.1016/j.combustflame.2013.10.004.
  • Sathyamurthy, V., S. Gopalan, S. Suresh, B. Ramaraj, and S. K. Deenadayalan. 2021. Comparative study of various approaches in analysis of TGA data of devolatilization of high ash Indian coal. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 1–15. doi:10.1080/15567036.2020.1871447.
  • Simone, M., E. Biagini, C. Galletti, and L. Tognotti. 2009. Evaluation of global biomass devolatilization kinetics in a drop tube reactor with CFD aided experiments. Fuel 88 (10):1818–27. doi:10.1016/j.fuel.2009.04.032.
  • Smoot, L. D. 1993. Fundamentals of coal combustion for clean and efficient use. Amsterdam, Netherlands: Elsevier Science Publishers BV.
  • Sung, Y., C. Moon, S. Eom, G. Choi, and D. Kim. 2016. Coal-particle size effects on NO reduction and burnout characteristics with air-staged combustion in a pulverized coal-fired furnace. Fuel 182:558–67. doi:10.1016/j.fuel.2016.05.122.
  • Tan, J., Y. He, R. Zhu, Y. Zhu, and Z. Wang. 2023. Experimental study on co-firing characteristics of ammonia with pulverized coal in a staged combustion drop tube furnace. Proceedings of the Combustion Institute 39 (3):3217–25. doi:10.1016/j.proci.2022.07.032.
  • Wall, T., Y. Liu, C. Spero, L. Elliott, S. Khare, R. Rathnam, F. Zeenathal, B. Moghtaderi, B. Buhre, C. Sheng, et al. 2009. An overview on oxyfuel coal combustion—state of the art research and technology development. Chemical Engineering Research & Design 87 (8):1003–16. doi:10.1016/j.cherd.2009.02.005.
  • Wang, G., R. B. Silva, J. L. Azevedo, S. Martins-Dias, and M. Costa. 2014. Evaluation of the combustion behaviour and ash characteristics of biomass waste derived fuels. pine and coal in a drop tube furnace. Fuel 117:809–24. doi:10.1016/j.fuel.2013.09.080.
  • Williams, F. 1985. Combustion theory: The fundamental theory of chemically reacting flow systems. Cambridge, MA: Benjamin/Cummings Publishing Company.
  • Yang, Z. Q., L. Zhang, and J. Peng. 2016. Experimental study on gasification and kinetic characteristics of inferior coal with high ash content under CO2 atmosphere. Energy Sources, Part A Recovery, Utilization, & Environmental Effects 38 (3):309–14. doi:10.1080/15567036.2012.762700.
  • Zhang, K., K. Zhang, Y. Cao, and W. P. Pan. 2013. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses. Bioresource Technology 131:325–32. doi:10.1016/j.biortech.2012.12.163.
  • Zhou, M., S. Wang, S. Kuang, K. Luo, J. Fan, and A. Yu. 2019. CFD-DEM modelling of hydraulic conveying of solid particles in a vertical pipe. Powder Technology 354:893–905. doi:10.1016/j.powtec.2019.07.015.
  • Zhu, Q. 2014. Coal sampling and analysis standards. IEA Clean Coal Centre CCC/235: 1–112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.